1.引言
1.2. 机器学习中的关键组件
首先介绍一些核心组件。无论什么类型的机器学习问题,都会遇到这些组件:
-
可以用来学习的数据(data);
-
如何转换数据的模型(model);
-
一个目标函数(objective function),用来量化模型的有效性;
-
调整模型参数以优化目标函数的算法(algorithm)。
1.数据
仅仅拥有海量的数据是不够的,我们还需要正确的数据。 如果数据中充满了错误,或者如果数据的特征不能预测任务目标,那么模型很可能无效。 有一句古语很好地反映了这个现象:“输入的是垃圾,输出的也是垃圾。”
2. 模型
大多数机器学习会涉及到数据的转换。 比如一个“摄取照片并预测笑脸”的系统。再比如通过摄取到的一组传感器读数预测读数的正常与异常程度。 虽然简单的模型能够解决如上简单的问题,但本书中关注的问题超出了经典方法的极限。 深度学习与经典方法的区别主要在于:前者关注的功能强大的模型,这些模型由神经网络错综复杂的交织在一起,包含层层数据转换,因此被称为深度学习(deep learning)。 在讨论深度模型的过程中,本书也将提及一些传统方法。
3. 目标函数
前面的内容将机器学习介绍为“从经验中学习”。 这里所说的“学习”,是指自主提高模型完成某些任务的效能。 但是,什么才算真正的提高呢? 在机器学习中,我们需要定义模型的优劣程度的度量,这个度量在大多数情况是“可优化”的,这被称之为目标函数(objective function)。 我们通常定义一个目标函数,并希望优化它到最低点。 因为越低越好,所以这些函数有时被称为损失函数(loss function,或cost function)。 但这只是一个惯例,我们也可以取一个新的函数,优化到它的最高点。 这两个函数本质上是相同的,只是翻转一下符号。
当任务在试图预测数值时,最常见的损失函数是平方误差(squared error),即预测值与实际值之差的平方。 当试图解决分类问题时,最常见的目标函数是最小化错误率,即预测与实际情况不符的样本比例。 有些目标函数(如平方误差)很容易被优化,有些目标(如错误率)由于不可微性或其他复杂性难以直接优化。 在这些情况下,通常会优化替代目标。
通常,损失函数是根据模型参数定义的,并取决于数据集。 在一个数据集上,我们可以通过最小化总损失来学习模型参数的最佳值。 该数据集由一些为训练而收集的样本组成,称为训练数据集(training dataset,或称为训练集(training set))。 然而,在训练数据上表现良好的模型,并不一定在“新数据集”上有同样的性能,这里的“新数据集”通常称为测试数据集(test dataset,或称为测试集(test set))。
综上所述,可用数据集通常可以分成两部分:训练数据集用于拟合模型参数,测试数据集用于评估拟合的模型。 然后我们观察模型在这两部分数据集的性能。 “一个模型在训练数据集上的性能”可以被想象成“一个学生在模拟考试中的分数”。 这个分数用来为一些真正的期末考试做参考,即使成绩令人鼓舞,也不能保证期末考试成功。 换言之,测试性能可能会显著偏离训练性能。 当一个模型在训练集上表现良好,但不能推广到测试集时,这个模型被称为过拟合(overfitting)的。 就像在现实生活中,尽管模拟考试考得很好,真正的考试不一定百发百中。
4. 优化算法
当我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,接下来就需要一种算法,它能够搜索出最佳参数,以最小化损失函数。 深度学习中,大多流行的优化算法通常基于一种基本方法–梯度下降(gradient descent)。 简而言之,在每个步骤中,梯度下降法都会检查每个参数,看看如果仅对该参数进行少量变动,训练集损失会朝哪个方向移动。 然后,它在可以减少损失的方向上优化参数。
1.3 监督学习
监督学习(supervised learning)擅长在“给定输入特征”的情况下预测标签。 每个“特征-标签”对都称为一个样本(example)。 有时,即使标签是未知的,样本也可以指代输入特征。 我们的目标是生成一个模型,能够将任何输入特征映射到标签(即预测)。
举一个具体的例子: 假设我们需要预测患者的心脏病是否会发作,那么观察结果“心脏病发作”或“心脏病没有发作”将是样本的标签。 输入特征可能是生命体征,如心率、舒张压和收缩压等。
监督学习之所以能发挥作用,是因为在训练参数时,我们为模型提供了一个数据集,其中每个样本都有真实的标签。 用概率论术语来说,我们希望预测“估计给定输入特征的标签”的条件概率。 虽然监督学习只是几大类机器学习问题之一,但是在工业中,大部分机器学习的成功应用都使用了监督学习。 这是因为在一定程度上,许多重要的任务可以清晰地描述为,在给定一组特定的可用数据的情况下,估计未知事物的概率。
监督学习的学习过程一般可以分为三大步骤:
-
从已知大量数据样本中随机选取一个子集,为每个样本获取真实标签。有时,这些样本已有标签(例如,患者是否在下一年内康复?);有时,这些样本可能需要被人工标记(例如,图像分类)。这些输入和相应的标签一起构成了训练数据集;
-
选择有监督的学习算法,它将训练数据集作为输入,并输出一个“已完成学习的模型”;
-
将之前没有见过的样本特征放到这个“已完成学习的模型”中,使用模型的输出作为相应标签的预测。
-
回归:回归问题是预测连续值的问题。例如,预测房价、股票价格或者人的身高等。这些都是连续的数值,我们的目标是找到输入特征和连续目标值之间的关系。例如,我们可能会使用房屋的面积、位置、建造年份等特征来预测房价。
-
分类:分类问题是预测离散值的问题。例如,判断一封电子邮件是垃圾邮件还是非垃圾邮件,或者判断一张图片是猫还是狗。在这些情况下,我们的目标是根据输入特征将样本分到两个或更多的类别中。
-
标记问题:标记问题是关于对象的多个属性的预测,这些属性并不是互斥的。例如,在自然语言处理中,我们可能需要标记句子中的每个词的词性(名词、动词、形容词等)。在这种情况下,每个词可以有多个标签。
-
搜索:在监督学习中,搜索可以被看作是学习一种策略,以在大量可能的解决方案中找到最好的一个。例如,棋类游戏的AI,它需要在每一步中决定最佳的移动。
-
推荐系统:推荐系统是一种信息过滤系统,用于预测用户对项目的“评分”或“偏好”。例如,根据用户过去的购买历史、浏览历史等信息,预测用户可能喜欢哪些新产品或服务。例如,Netflix推荐系统会根据用户过去观看的电影来推荐可能喜欢的新电影。
1.3.2. 无监督学习
到目前为止,所有的例子都与监督学习有关,即需要向模型提供巨大数据集:每个样本包含特征和相应标签值。 打趣一下,“监督学习”模型像一个打工仔,有一份极其专业的工作和一位极其平庸的老板。 老板站在身后,准确地告诉模型在每种情况下应该做什么,直到模型学会从情况到行动的映射。 取悦这位老板很容易,只需尽快识别出模式并模仿他们的行为即可。
相反,如果工作没有十分具体的目标,就需要“自发”地去学习了。 比如,老板可能会给我们一大堆数据,然后要求用它做一些数据科学研究,却没有对结果有要求。 这类数据中不含有“目标”的机器学习问题通常被为无监督学习(unsupervised learning), 本书后面的章节将讨论无监督学习技术。 那么无监督学习可以回答什么样的问题呢?来看看下面的例子。
-
聚类(clustering)问题:没有标签的情况下,我们是否能给数据分类呢?比如,给定一组照片,我们能把它们分成风景照片、狗、婴儿、猫和山峰的照片吗?同样,给定一组用户的网页浏览记录,我们能否将具有相似行为的用户聚类呢?
-
主成分分析(principal component analysis)问题:我们能否找到少量的参数来准确地捕捉数据的线性相关属性?比如,一个球的运动轨迹可以用球的速度、直径和质量来描述。再比如,裁缝们已经开发出了一小部分参数,这些参数相当准确地描述了人体的形状,以适应衣服的需要。另一个例子:在欧几里得空间中是否存在一种(任意结构的)对象的表示,使其符号属性能够很好地匹配?这可以用来描述实体及其关系,例如“罗马” − “意大利” + “法国” = “巴黎”。
-
因果关系(causality)和概率图模型(probabilistic graphical models)问题:我们能否描述观察到的许多数据的根本原因?例如,如果我们有关于房价、污染、犯罪、地理位置、教育和工资的人口统计数据,我们能否简单地根据经验数据发现它们之间的关系?
-
生成对抗性网络(generative adversarial networks):为我们提供一种合成数据的方法,甚至像图像和音频这样复杂的非结构化数据。潜在的统计机制是检查真实和虚假数据是否相同的测试,它是无监督学习的另一个重要而令人兴奋的领域。
1.3.3. 与环境互动
有人一直心存疑虑:机器学习的输入(数据)来自哪里?机器学习的输出又将去往何方? 到目前为止,不管是监督学习还是无监督学习,我们都会预先获取大量数据,然后启动模型,不再与环境交互。 这里所有学习都是在算法与环境断开后进行的,被称为离线学习(offline learning)。 对于监督学习,从环境中收集数据的过程类似于 图1.3.6。
1.3.4. 强化学习
如果你对使用机器学习开发与环境交互并采取行动感兴趣,那么最终可能会专注于强化学习(reinforcement learning)。 这可能包括应用到机器人、对话系统,甚至开发视频游戏的人工智能(AI)。 深度强化学习(deep reinforcement learning)将深度学习应用于强化学习的问题,是非常热门的研究领域。 突破性的深度Q网络(Q-network)在雅达利游戏中仅使用视觉输入就击败了人类, 以及 AlphaGo 程序在棋盘游戏围棋中击败了世界冠军,是两个突出强化学习的例子。
在强化学习问题中,智能体(agent)在一系列的时间步骤上与环境交互。 在每个特定时间点,智能体从环境接收一些观察(observation),并且必须选择一个动作(action),然后通过某种机制(有时称为执行器)将其传输回环境,最后智能体从环境中获得奖励(reward)。 此后新一轮循环开始,智能体接收后续观察,并选择后续操作,依此类推。 强化学习的过程在 图1.3.7 中进行了说明。 请注意,强化学习的目标是产生一个好的策略(policy)。 强化学习智能体选择的“动作”受策略控制,即一个从环境观察映射到行动的功能。
强化学习框架的通用性十分强大。 例如,我们可以将任何监督学习问题转化为强化学习问题。 假设我们有一个分类问题,可以创建一个强化学习智能体,每个分类对应一个“动作”。 然后,我们可以创建一个环境,该环境给予智能体的奖励。 这个奖励与原始监督学习问题的损失函数是一致的。
当然,强化学习还可以解决许多监督学习无法解决的问题。 例如,在监督学习中,我们总是希望输入与正确的标签相关联。 但在强化学习中,我们并不假设环境告诉智能体每个观测的最优动作。 一般来说,智能体只是得到一些奖励。 此外,环境甚至可能不会告诉是哪些行为导致了奖励。
以强化学习在国际象棋的应用为例。 唯一真正的奖励信号出现在游戏结束时:当智能体获胜时,智能体可以得到奖励1;当智能体失败时,智能体将得到奖励-1。 因此,强化学习者必须处理学分分配(credit assignment)问题:决定哪些行为是值得奖励的,哪些行为是需要惩罚的。 就像一个员工升职一样,这次升职很可能反映了前一年的大量的行动。 要想在未来获得更多的晋升,就需要弄清楚这一过程中哪些行为导致了晋升。
强化学习可能还必须处理部分可观测性问题。 也就是说,当前的观察结果可能无法阐述有关当前状态的所有信息。 比方说,一个清洁机器人发现自己被困在一个许多相同的壁橱的房子里。 推断机器人的精确位置(从而推断其状态),需要在进入壁橱之前考虑它之前的观察结果。
最后,在任何时间点上,强化学习智能体可能知道一个好的策略,但可能有许多更好的策略从未尝试过的。 强化学习智能体必须不断地做出选择:是应该利用当前最好的策略,还是探索新的策略空间(放弃一些短期回报来换取知识)。
1.4. 小结
-
机器学习研究计算机系统如何利用经验(通常是数据)来提高特定任务的性能。它结合了统计学、数据挖掘和优化的思想。通常,它是被用作实现人工智能解决方案的一种手段。
-
表示学习作为机器学习的一类,其研究的重点是如何自动找到合适的数据表示方式。深度学习是通过学习多层次的转换来进行的多层次的表示学习。
-
深度学习不仅取代了传统机器学习的浅层模型,而且取代了劳动密集型的特征工程。
-
最近在深度学习方面取得的许多进展,大都是由廉价传感器和互联网规模应用所产生的大量数据,以及(通过GPU)算力的突破来触发的。
-
整个系统优化是获得高性能的关键环节。有效的深度学习框架的开源使得这一点的设计和实现变得非常容易。
2. 预备知识
动手学深度学习v2
1. 引言 — 动手学深度学习 2.0.0 documentation