文章目录
- 一、Linux 下 LED 灯驱动原理
- 1. 地址映射
- 1.1 ioremap 函数
- 1.2 iounmap 函数
- 2. I/O 内存访问函数
- 2.1 读操作函数
- 2.2 写操作函数
- 二、实验程序编写
- 1. LED 灯驱动程序编写
- 2. 编写测试 APP
- 三、运行测试
- 1. 编译驱动程序和测试 APP
- 1.1 编译驱动程序
- 1.2 编译测试 APP
- 2. 运行测试
一、Linux 下 LED 灯驱动原理
Linux 下的任何外设驱动,最终都是要配置相应的硬件寄存器。所以本章的 LED 灯驱动最终也是对 I.MX6ULL 的 IO 口进行配置,与裸机实验不同的是,在 Linux 下编写驱动要符合 Linux 的驱动框架。I.MX6U-ALPHA 开发板上的 LED 连接到 I.MX6ULL 的 GPIO1_IO03 这个引脚上,因此本章实验的重点就是编写 Linux 下 I.MX6UL 引脚控制驱动。
1. 地址映射
在编写驱动之前,我们需要先简单了解一下 MMU 这个神器, MMU 全称叫做 Memory Manage Unit,也就是内存管理单元。在老版本的 Linux 中要求处理器必须有 MMU,但是现在 Linux 内核已经支持无 MMU 的处理器了。 MMU 主要完成的功能如下:
- 完成虚拟空间到物理空间的映射。
- 内存保护,设置存储器的访问权限,设置虚拟存储空间的缓冲特性。
重点来看一下第①点,也就是虚拟空间到物理空间的映射,也叫做地址映射。首先了解两个地址概念:虚拟地址(VA,Virtual Address)、物理地址(PA, Physcical Address)。对于 32 位的处理器来说,虚拟地址范围是 2^32=4GB,我们的开发板上有 512MB 的 DDR3,这 512MB 的内存就是物理内存,经过 MMU 可以将其映射到整个 4GB 的虚拟空间,如图所示:
物理内存只有 512MB,虚拟内存有 4GB,那么肯定存在多个虚拟地址映射到同一个物理地址上去,虚拟地址范围比物理地址范围大的问题处理器自会处理,这里我们不要去深究,因为 MMU 是很复杂的一个东西。
Linux 内核启动的时候会初始化 MMU,设置好内存映射,设置好以后 CPU 访问的都是虚拟 地 址 。 比 如 I.MX6ULL 的 GPIO1_IO03 引 脚 的 复 用 寄 存 器 IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 的地址为 0X020E0068。如果没有开启 MMU 的话直接向 0X020E0068 这个寄存器地址写入数据就可以配置 GPIO1_IO03 的复用功能。现在开启了 MMU,并且设置了内存映射,因此就不能直接向 0X020E0068 这个地址写入数据了。我们必须得到 0X020E0068 这个物理地址在 Linux 系统里面对应的虚拟地址,这里就涉及到了物理内存和虚拟内存之间的转换,需要用到两个函数: ioremap 和 iounmap。
1.1 ioremap 函数
ioremap 函 数 用 于 获 取 指 定 物 理 地 址 空 间 对 应 的 虚 拟 地 址 空 间 , 定 义 在 arch/arm/include/asm/io.h 文件中,定义如下:
1 #define ioremap(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE)
2
3 void __iomem * __arm_ioremap(phys_addr_t phys_addr, size_t size, unsigned int mtype)
4 {
5 return arch_ioremap_caller(phys_addr, size, mtype, __builtin_return_address(0));
6 }
ioremap 是个宏,有两个参数: cookie 和 size,真正起作用的是函数__arm_ioremap,此函数有三个参数和一个返回值,这些参数和返回值的含义如下:
phys_addr:要映射的物理起始地址。
size:要映射的内存空间大小。
mtype: ioremap 的类型,可以选择 MT_DEVICE、 MT_DEVICE_NONSHARED、MT_DEVICE_CACHED 和 MT_DEVICE_WC, ioremap 函数选择 MT_DEVICE。
返回值: __iomem 类型的指针,指向映射后的虚拟空间首地址。
假如我们要获取 I.MX6ULL 的 IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 寄存器对应的虚拟地址,使用如下代码即可:
#define SW_MUX_GPIO1_IO03_BASE (0X020E0068)
static void __iomem* SW_MUX_GPIO1_IO03;
SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4);
宏 SW_MUX_GPIO1_IO03_BASE 是寄存器物理地址, SW_MUX_GPIO1_IO03 是映射后的虚拟地址。对于 I.MX6ULL 来说一个寄存器是 4 字节(32 位)的,因此映射的内存长度为 4。映射完成以后直接对 SW_MUX_GPIO1_IO03 进行读写操作即可。
1.2 iounmap 函数
卸载驱动的时候需要使用 iounmap 函数释放掉 ioremap 函数所做的映射, iounmap 函数原型如下:
void iounmap (volatile void __iomem *addr)
iounmap 只有一个参数 addr,此参数就是要取消映射的虚拟地址空间首地址。假如我们现在要取消掉 IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 寄存器的地址映射,使用如下代码即可:
iounmap(SW_MUX_GPIO1_IO03);
2. I/O 内存访问函数
这里说的 I/O 是输入/输出的意思,并不是我们学习单片机的时候讲的 GPIO 引脚。这里涉及到两个概念: I/O 端口和 I/O 内存。当外部寄存器或内存映射到 IO 空间时,称为 I/O 端口。当外部寄存器或内存映射到内存空间时,称为 I/O 内存。但是对于 ARM 来说没有 I/O 空间这个概念,因此 ARM 体系下只有 I/O 内存(可以直接理解为内存)。使用 ioremap 函数将寄存器的物理地址映射到虚拟地址以后,我们就可以直接通过指针访问这些地址,但是 Linux 内核不建议这么做,而是推荐使用一组操作函数来对映射后的内存进行读写操作。
2.1 读操作函数
readb、 readw 和 readl 这三个函数分别对应 8bit、 16bit 和 32bit 读操作,参数 addr 就是要读取写内存地址,返回值就是读取到的数据。
u8 readb(const volatile void __iomem *addr)
u16 readw(const volatile void __iomem *addr)
u32 readl(const volatile void __iomem *addr)
2.2 写操作函数
writeb、 writew 和 writel 这三个函数分别对应 8bit、 16bit 和 32bit 写操作,参数 value 是要写入的数值, addr 是要写入的地址。
void writeb(u8 value, volatile void __iomem *addr)
void writew(u16 value, volatile void __iomem *addr)
void writel(u32 value, volatile void __iomem *addr)
二、实验程序编写
1. LED 灯驱动程序编写
新建名为“2_led”文件夹,然后在 2_led 文件夹里面创建 VSCode 工程,工作区命名为“led”。工程创建好以后新建 led.c 文件,此文件就是 led 的驱动文件,在 led.c 里面输入如下内容:
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
/***************************************************************
Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
文件名 : led.c
作者 : 左忠凯
版本 : V1.0
描述 : LED驱动文件。
其他 : 无
论坛 : www.openedv.com
日志 : 初版V1.0 2019/1/30 左忠凯创建
***************************************************************/
#define LED_MAJOR 200 /* 主设备号 */
#define LED_NAME "led" /* 设备名字 */
#define LEDOFF 0 /* 关灯 */
#define LEDON 1 /* 开灯 */
/* 寄存器物理地址 */
#define CCM_CCGR1_BASE (0X020C406C)
#define SW_MUX_GPIO1_IO03_BASE (0X020E0068)
#define SW_PAD_GPIO1_IO03_BASE (0X020E02F4)
#define GPIO1_DR_BASE (0X0209C000)
#define GPIO1_GDIR_BASE (0X0209C004)
/* 映射后的寄存器虚拟地址指针 */
static void __iomem *IMX6U_CCM_CCGR1;
static void __iomem *SW_MUX_GPIO1_IO03;
static void __iomem *SW_PAD_GPIO1_IO03;
static void __iomem *GPIO1_DR;
static void __iomem *GPIO1_GDIR;
/*
* @description : LED打开/关闭
* @param - sta : LEDON(0) 打开LED,LEDOFF(1) 关闭LED
* @return : 无
*/
void led_switch(u8 sta)
{
u32 val = 0;
if(sta == LEDON) {
val = readl(GPIO1_DR);
val &= ~(1 << 3);
writel(val, GPIO1_DR);
}else if(sta == LEDOFF) {
val = readl(GPIO1_DR);
val|= (1 << 3);
writel(val, GPIO1_DR);
}
}
/*
* @description : 打开设备
* @param - inode : 传递给驱动的inode
* @param - filp : 设备文件,file结构体有个叫做private_data的成员变量
* 一般在open的时候将private_data指向设备结构体。
* @return : 0 成功;其他 失败
*/
static int led_open(struct inode *inode, struct file *filp)
{
return 0;
}
/*
* @description : 从设备读取数据
* @param - filp : 要打开的设备文件(文件描述符)
* @param - buf : 返回给用户空间的数据缓冲区
* @param - cnt : 要读取的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/
static ssize_t led_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
return 0;
}
/*
* @description : 向设备写数据
* @param - filp : 设备文件,表示打开的文件描述符
* @param - buf : 要写给设备写入的数据
* @param - cnt : 要写入的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 写入的字节数,如果为负值,表示写入失败
*/
static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
int retvalue;
unsigned char databuf[1];
unsigned char ledstat;
retvalue = copy_from_user(databuf, buf, cnt);
if(retvalue < 0) {
printk("kernel write failed!\r\n");
return -EFAULT;
}
ledstat = databuf[0]; /* 获取状态值 */
if(ledstat == LEDON) {
led_switch(LEDON); /* 打开LED灯 */
} else if(ledstat == LEDOFF) {
led_switch(LEDOFF); /* 关闭LED灯 */
}
return 0;
}
/*
* @description : 关闭/释放设备
* @param - filp : 要关闭的设备文件(文件描述符)
* @return : 0 成功;其他 失败
*/
static int led_release(struct inode *inode, struct file *filp)
{
return 0;
}
/* 设备操作函数 */
static struct file_operations led_fops = {
.owner = THIS_MODULE,
.open = led_open,
.read = led_read,
.write = led_write,
.release = led_release,
};
/*
* @description : 驱动出口函数
* @param : 无
* @return : 无
*/
static int __init led_init(void)
{
int retvalue = 0;
u32 val = 0;
/* 初始化LED */
/* 1、寄存器地址映射 */
IMX6U_CCM_CCGR1 = ioremap(CCM_CCGR1_BASE, 4);
SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4);
SW_PAD_GPIO1_IO03 = ioremap(SW_PAD_GPIO1_IO03_BASE, 4);
GPIO1_DR = ioremap(GPIO1_DR_BASE, 4);
GPIO1_GDIR = ioremap(GPIO1_GDIR_BASE, 4);
/* 2、使能GPIO1时钟 */
val = readl(IMX6U_CCM_CCGR1);
val &= ~(3 << 26); /* 清楚以前的设置 */
val |= (3 << 26); /* 设置新值 */
writel(val, IMX6U_CCM_CCGR1);
/* 3、设置GPIO1_IO03的复用功能,将其复用为
* GPIO1_IO03,最后设置IO属性。
*/
writel(5, SW_MUX_GPIO1_IO03);
/*寄存器SW_PAD_GPIO1_IO03设置IO属性
*bit 16:0 HYS关闭
*bit [15:14]: 00 默认下拉
*bit [13]: 0 kepper功能
*bit [12]: 1 pull/keeper使能
*bit [11]: 0 关闭开路输出
*bit [7:6]: 10 速度100Mhz
*bit [5:3]: 110 R0/6驱动能力
*bit [0]: 0 低转换率
*/
writel(0x10B0, SW_PAD_GPIO1_IO03);
/* 4、设置GPIO1_IO03为输出功能 */
val = readl(GPIO1_GDIR);
val &= ~(1 << 3); /* 清除以前的设置 */
val |= (1 << 3); /* 设置为输出 */
writel(val, GPIO1_GDIR);
/* 5、默认关闭LED */
val = readl(GPIO1_DR);
val |= (1 << 3);
writel(val, GPIO1_DR);
/* 6、注册字符设备驱动 */
retvalue = register_chrdev(LED_MAJOR, LED_NAME, &led_fops);
if(retvalue < 0){
printk("register chrdev failed!\r\n");
return -EIO;
}
return 0;
}
/*
* @description : 驱动出口函数
* @param : 无
* @return : 无
*/
static void __exit led_exit(void)
{
/* 取消映射 */
iounmap(IMX6U_CCM_CCGR1);
iounmap(SW_MUX_GPIO1_IO03);
iounmap(SW_PAD_GPIO1_IO03);
iounmap(GPIO1_DR);
iounmap(GPIO1_GDIR);
/* 注销字符设备驱动 */
unregister_chrdev(LED_MAJOR, LED_NAME);
}
module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("zuozhongkai");
第 22~26 行,定义了一些宏,包括主设备号、设备名字、 LED 开/关宏。
第 29~33 行,本实验要用到的寄存器宏定义。
第 36~40 行,经过内存映射以后的寄存器地址指针。
第 47~59 行, led_switch 函数,用于控制开发板上的 LED 灯亮灭,当参数 sta 为 LEDON(1)的时候打开 LED 灯, sta 为 LEDOFF(0)的时候关闭 LED 灯。
第 68~71 行, led_open 函数,为空函数,可以自行在此函数中添加相关内容,一般在此函数中将设备结构体作为参数 filp 的私有数据(filp->private_data)。
第 81~84 行, led_read 函数,为空函数,如果想在应用程序中读取 LED 的状态,那么就可以在此函数中添加相应的代码,比如读取 GPIO1_DR 寄存器的值,然后返回给应用程序。
第 94~114 行, led_write 函数,实现对 LED 灯的开关操作,当应用程序调用 write 函数向 led 设备写数据的时候此函数就会执行。首先通过函数 copy_from_user 获取应用程序发送过来的操作信息(打开还是关闭 LED),最后根据应用程序的操作信息来打开或关闭 LED 灯。
第 121~124 行, led_release 函数,为空函数,可以自行在此函数中添加相关内容,一般关闭设备的时候会释放掉 led_open 函数中添加的私有数据。
第 127~133 行,设备文件操作结构体 led_fops 的定义和初始化。
第 140~185 行,驱动入口函数 led_init,此函数实现了 LED 的初始化工作, 147~151 行通过 ioremap 函数获取物理寄存器地址映射后的虚拟地址,得到寄存器对应的虚拟地址以后就可以完成相关初始化工作了。比如使能 GPIO1 时钟、设置 GPIO1_IO03 复用功能、配置 GPIO1_IO03 的属性等等。最后,最重要的一步!使用 register_chrdev 函数注册 led 这个字符设备。
第 192~202 行,驱动出口函数 led_exit,首先使用函数 iounmap 取消内存映射,最后使用函数 unregister_chrdev 注销 led 这个字符设备。
第 205~206 行,使用 module_init 和 module_exit 这两个函数指定 led 设备驱动加载和卸载函数。
第 207~208 行,添加 LICENSE 和作者信息。
2. 编写测试 APP
编写测试 APP, led 驱动加载成功以后手动创建/dev/led 节点,应用 APP 通过操作/dev/led 文件来完成对 LED 设备的控制。向/dev/led 文件写 0 表示关闭 LED 灯,写 1 表示打开 LED 灯。新建 ledApp.c 文件,在里面输入如下内容:
#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
/***************************************************************
Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
文件名 : ledApp.c
作者 : 左忠凯
版本 : V1.0
描述 : chrdevbase驱测试APP。
其他 : 无
使用方法 :./ledtest /dev/led 0 关闭LED
./ledtest /dev/led 1 打开LED
论坛 : www.openedv.com
日志 : 初版V1.0 2019/1/30 左忠凯创建
***************************************************************/
#define LEDOFF 0
#define LEDON 1
/*
* @description : main主程序
* @param - argc : argv数组元素个数
* @param - argv : 具体参数
* @return : 0 成功;其他 失败
*/
int main(int argc, char *argv[])
{
int fd, retvalue;
char *filename;
unsigned char databuf[1];
if(argc != 3){
printf("Error Usage!\r\n");
return -1;
}
filename = argv[1];
/* 打开led驱动 */
fd = open(filename, O_RDWR);
if(fd < 0){
printf("file %s open failed!\r\n", argv[1]);
return -1;
}
databuf[0] = atoi(argv[2]); /* 要执行的操作:打开或关闭 */
/* 向/dev/led文件写入数据 */
retvalue = write(fd, databuf, sizeof(databuf));
if(retvalue < 0){
printf("LED Control Failed!\r\n");
close(fd);
return -1;
}
retvalue = close(fd); /* 关闭文件 */
if(retvalue < 0){
printf("file %s close failed!\r\n", argv[1]);
return -1;
}
return 0;
}
ledApp.c 的内容还是很简单的,就是对 led 的驱动文件进行最基本的打开、关闭、写操作等。
三、运行测试
1. 编译驱动程序和测试 APP
1.1 编译驱动程序
编写 Makefile 文件,本章实验的 Makefile 文件和第四十章实验基本一样,只是将 obj-m 变量的值改为 led.o, Makefile 内容如下所示:
KERNELDIR := /home/zuozhongkai/linux/IMX6ULL/linux/temp/linux-imx-rel_imx_4.1.15_2.1.0_ga_alientek
CURRENT_PATH := $(shell pwd)
obj-m := led.o
build: kernel_modules
kernel_modules:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules
clean:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean
第 4 行,设置 obj-m 变量的值为 led.o。输入如下命令编译出驱动模块文件:make -j32
编译成功以后就会生成一个名为“led.ko”的驱动模块文件。
1.2 编译测试 APP
输入如下命令编译测试 ledApp.c 这个测试程序:
arm-linux-gnueabihf-gcc ledApp.c -o ledApp
编译成功以后就会生成 ledApp 这个应用程序。
2. 运行测试
将编译出来的led.ko和ledApp这两个文件拷贝到rootfs/lib/modules/4.1.15目录中,重启开发板,进入到目录 lib/modules/4.1.15 中,输入如下命令加载 led.ko 驱动模块:
depmod //第一次加载驱动的时候需要运行此命令
modprobe led.ko //加载驱动
驱动加载成功以后创建“/dev/led”设备节点,命令如下:
mknod /dev/led c 200 0
驱动节点创建成功以后就可以使用 ledApp 软件来测试驱动是否工作正常,输入如下命令打开 LED 灯:
./ledApp /dev/led 1 //打开 LED 灯
输入上述命令以后观察 I.MX6U-ALPHA 开发板上的红色 LED 灯是否点亮,如果点亮的话说明驱动工作正常。在输入如下命令关闭 LED 灯:
./ledApp /dev/led 0 //关闭 LED 灯
输入上述命令以后观察 I.MX6U-ALPHA 开发板上的红色 LED 灯是否熄灭,如果熄灭的话说明我们编写的 LED 驱动工作完全正常!至此,我们成功编写了第一个真正的 Linux 驱动设备程序。
如果要卸载驱动的话输入如下命令即可:
rmmod led.ko