目录
内容
Python代码
C++ 代码
workspace 文件
BUILD文件
Java 代码
maven文件
执行效果
内容
基于openai接口实现循环gpt问答,并使用一个文件将问答内容进行记录。
Python代码
# -*- coding: utf-8 -*-
import openai
import time
from pathlib import Path
# Set the OpenAI API key
openai.api_key = ""
class ChatBot:
def __init__(self, model):
self.user = "\nYou: "
self.bot = "GPT-3.5-turbo: "
self.model = model
self.question_list = []
self.answer_list = []
self.text = ''
self.turns = []
self.last_result = ''
def save_dialogue(self):
# Generate a timestamp and create a filename for saving the dialogue
timestamp = time.strftime("%Y%m%d-%H%M-%S", time.localtime()) # Timestamp
file_name = 'output/Chat_' + timestamp + '.md' # Filename
f = Path(file_name)
f.parent.mkdir(parents=True, exist_ok=True)
# Save the dialogue to the file
with open(file_name, "w", encoding="utf-8") as f:
for q, a in zip(self.question_list, self.answer_list):
f.write(f"You: {q}\nGPT-3.5-turbo: {a}\n\n")
print("Dialogue content saved to file: " + file_name)
def generate(self):
print('\nStart your conversation, type "exit" to end.')
while True:
question = input(self.user)
self.question_list.append(question)
prompt = self.bot + self.text + self.user + question
if question == 'exit':
break
else:
try:
response = openai.ChatCompletion.create(
model=self.model,
messages=[
{"role": "user", "content": prompt},
],
)
result = response["choices"][0]["message"]["content"].strip()
print(result)
self.answer_list.append(result)
self.last_result = result
self.turns += [question] + [result]
if len(self.turns) <= 10:
self.text = " ".join(self.turns)
else:
self.text = " ".join(self.turns[-10:])
except Exception as exc:
print(exc)
self.save_dialogue()
if __name__ == '__main__':
bot = ChatBot('gpt-3.5-turbo')
bot.generate()
在这个代码中,我们实现了一个与 GPT-3.5-turbo 模型进行对话的聊天机器人。以下是代码的执行流程:
- 首先,我们导入需要用到的库,包括 openai、time 和 pathlib。
- 我们设置 OpenAI API 密钥,以便能够调用 GPT-3.5-turbo 模型。
- 定义一个名为 ChatBot 的类,该类用于与 GPT-3.5-turbo 模型进行交互。
- 类的 __init__ 方法初始化聊天机器人,包括设定用户和机器人的提示符(self.user 和 self.bot),以及其他一些变量,如问题列表、回答列表等。
- save_dialogue 方法用于将聊天记录保存到文件中。这个方法首先创建一个带有时间戳的文件名,然后将问题和回答列表中的内容写入该文件。
- generate 方法用于与 GPT-3.5-turbo 模型进行交互。在这个方法中,我们使用一个循环来获取用户输入的问题,并将其添加到问题列表中。然后,我们构建提示并使用 OpenAI API 调用 GPT-3.5-turbo 模型。我们获取模型的回答,并将其添加到回答列表中。循环会一直进行,直到用户输入 "exit",此时循环结束,调用 save_dialogue 方法将对话内容保存到文件中。
- 在主函数(if __name__ == '__main__')中,我们创建一个 ChatBot 类的实例,并调用 generate 方法开始与 GPT-3.5-turbo 模型的交互。
C++ 代码
// main.cpp
#include <cpprest/http_client.h>
#include <cpprest/filestream.h>
#include <cpprest/json.h>
#include <iostream>
#include <fstream>
#include <string>
#include <ctime>
#include <iomanip>
using namespace utility;
using namespace web;
using namespace web::http;
using namespace web::http::client;
using namespace concurrency::streams;
namespace {
const std::string api_key = "";
}
class ChatBot {
public:
/**
* @brief Construct a new ChatBot object
*
* @param model The OpenAI GPT model to use (e.g., "gpt-3.5-turbo")
*/
explicit ChatBot(std::string model) : model_(model) {}
/**
* @brief Save the dialogue content to a Markdown file
*
* @note This function saves the generated dialogue to a Markdown file named
* "Chat_timestamp.md" in the "output" directory.
*/
void SaveDialogue() {
auto timestamp = std::time(nullptr);
std::stringstream ss;
ss << "output/Chat_" << std::put_time(std::localtime(×tamp), "%Y%m%d-%H%M-%S") << ".md";
std::string file_name = ss.str();
std::ofstream out(file_name);
if (!out) {
std::cerr << "Could not create the output file.\n";
return;
}
for (size_t i = 0; i < question_list_.size(); ++i) {
out << "You: " << question_list_[i] << "\nGPT-3.5-turbo: " << answer_list_[i] << "\n\n";
}
out.close();
std::cout << "Dialogue content saved to file: " << file_name << std::endl;
}
/**
* @brief Generate answers to the user's questions using the GPT model
*
* @note This function prompts the user for their questions, generates answers
* using the GPT model, and saves the dialogue to a file when the user exits.
*/
void Generate() {
std::string question;
std::cout << "\nStart your conversation, type \"exit\" to end." << std::endl;
while (true) {
std::cout << "\nYou: ";
std::getline(std::cin, question);
if (question == "exit") {
break;
}
question_list_.push_back(question);
auto answer = GetAnswer(question);
if (!answer.empty()) {
std::cout << "GPT-3.5-turbo: " << answer << std::endl;
answer_list_.push_back(answer);
}
}
SaveDialogue();
}
private:
/**
* @brief Get the GPT model's answer to the given question
*
* @param question The user's question
* @return The GPT model's answer as a string
*
* @note This function sends the user's question to the GPT model and
* retrieves the model's answer as a string. If an error occurs, it
* returns an empty string.
*/
std::string GetAnswer(const std::string& question) {
http_client client(U("https://api.openai.com/v1/engines/gpt-3.5-turbo/completions"));
http_request request(methods::POST);
request.headers().add("Authorization", "Bearer "+api_key);
request.headers().add("Content-Type", "application/json");
json::value body;
body[U("prompt")] = json::value::string(U("GPT-3.5-turbo: " + question));
body[U("max_tokens")] = 50;
body[U("n")] = 1;
body[U("stop")] = json::value::array({json::value::string(U("\n"))});
request.set_body(body);
try {
auto response = client.request(request).get();
auto response_body = response.extract_json().get();
auto result = response_body.at(U("choices")).as_array()[0].at(U("text")).as_string();
return utility::conversions::to_utf8string(result);
} catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
return "";
}
}
std::string model_;
std::vector<std::string> question_list_;
std::vector<std::string> answer_list_;
};
int main(){
ChatBot bot("gpt-3.5-turbo");
bot.Generate();
return 0;
}
因为我的最近经常在使用bazel,所以给出一个基于bazel 的C++编译方法
workspace 文件
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
# Add cpprestsdk as a dependency
http_archive(
name = "cpprestsdk",
build_file = "@//:cpprestsdk.BUILD",
sha256 = "106e8a5a4f9667f329b8f277f8f25e1f2d31f1a7c7f9e1f366c5b1e3af2f8c4c",
strip_prefix = "cpprestsdk-2.10.18",
urls = ["https://github.com/microsoft/cpprestsdk/archive/v2.10.18.zip"],
)
BUILD文件
cc_binary(
name = "chatbot",
srcs = ["main.cpp"],
deps = [
"@cpprestsdk//:cpprest",
],
linkopts = [
# Required for cpprestsdk
"-lboost_system",
"-lssl",
"-lcrypto",
],
)
# cpprestsdk.BUILD file content (create this file in the same directory as WORKSPACE)
'''
load("@rules_cc//cc:defs.bzl", "cc_library")
cc_library(
name = "cpprest",
hdrs = glob(["cpprestsdk/cpprestsdk/Release/include/**/*.h"]),
srcs = glob([
"cpprestsdk/cpprestsdk/Release/src/http/client/*.cpp",
"cpprestsdk/cpprestsdk/Release/src/http/common/*.cpp",
"cpprestsdk/cpprestsdk/Release/src/http/listener/*.cpp",
"cpprestsdk/cpprestsdk/Release/src/json/*.cpp",
"cpprestsdk/cpprestsdk/Release/src/pplx/*.cpp",
"cpprestsdk/cpprestsdk/Release/src/uri/*.cpp",
"cpprestsdk/cpprestsdk/Release/src/utilities/*.cpp",
"cpprestsdk/cpprestsdk/Release/src/websockets/client/*.cpp",
]),
includes = ["cpprestsdk/cpprestsdk/Release/include"],
copts = ["-std=c++11"],
linkopts = [
"-lboost_system",
"-lssl",
"-lcrypto",
],
visibility = ["//visibility:public"],
)
'''
Java 代码
// ChatBot.java
import okhttp3.*;
import com.google.gson.*;
import java.io.*;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
public class ChatBot {
private static final String API_KEY = "your_openai_api_key_here";
private String model;
private ArrayList<String> questionList;
private ArrayList<String> answerList;
public ChatBot(String model) {
this.model = model;
this.questionList = new ArrayList<>();
this.answerList = new ArrayList<>();
}
public void saveDialogue() {
LocalDateTime timestamp = LocalDateTime.now();
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyyMMdd-HHmm-ss");
String fileName = "output/Chat_" + timestamp.format(formatter) + ".md";
try (BufferedWriter writer = new BufferedWriter(new FileWriter(fileName))) {
for (int i = 0; i < questionList.size(); ++i) {
writer.write("You: " + questionList.get(i) + "\nGPT-3.5-turbo: " + answerList.get(i) + "\n\n");
}
System.out.println("Dialogue content saved to file: " + fileName);
} catch (IOException e) {
System.err.println("Could not create the output file.");
e.printStackTrace();
}
}
public void generate() {
System.out.println("\nStart your conversation, type \"exit\" to end.");
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
String question;
while (true) {
System.out.print("\nYou: ");
try {
question = reader.readLine();
} catch (IOException e) {
System.err.println("Error reading input.");
e.printStackTrace();
break;
}
if ("exit".equalsIgnoreCase(question)) {
break;
}
questionList.add(question);
String answer = getAnswer(question);
if (!answer.isEmpty()) {
System.out.println("GPT-3.5-turbo: " + answer);
answerList.add(answer);
}
}
saveDialogue();
}
private String getAnswer(String question) {
OkHttpClient client = new OkHttpClient();
Gson gson = new Gson();
String requestBodyJson = gson.toJson(new RequestBody("GPT-3.5-turbo: " + question, 50, 1, "\n"));
RequestBody requestBody = RequestBody.create(requestBodyJson, MediaType.parse("application/json"));
Request request = new Request.Builder()
.url("https://api.openai.com/v1/engines/gpt-3.5-turbo/completions")
.addHeader("Authorization", "Bearer " + API_KEY)
.addHeader("Content-Type", "application/json")
.post(requestBody)
.build();
try (Response response = client.newCall(request).execute()) {
if (!response.isSuccessful()) {
throw new IOException("Unexpected code " + response);
}
String responseBodyJson = response.body().string();
ResponseBody responseBody = gson.fromJson(responseBodyJson, ResponseBody.class);
return responseBody.choices.get(0).text.trim();
} catch (IOException e) {
System.err.println("Error: " + e.getMessage());
e.printStackTrace();
return "";
}
}
public static void main(String[] args) {
ChatBot bot = new ChatBot("gpt-3.5-turbo");
bot.generate();
}
private static class RequestBody {
String prompt;
int max_tokens;
int n;
String stop;
RequestBody(String prompt, int max_tokens, int n, String stop) {
this.prompt = prompt;
this.max_tokens = max_tokens;
this.n = n;
this.stop = stop;
}
}
private static class ResponseBody {
ArrayList<Choice> choices;
private static class Choice {
String text;
}
}
}
maven文件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.example</groupId>
<artifactId>gpt-chatbot</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>com.squareup.okhttp3</groupId>
<artifactId>okhttp</artifactId>
<version>4.9.3</version>
</dependency>
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.8.9</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.0</version>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>3.1.0</version>
<configuration>
<archive>
<manifest>
<addClasspath>true</addClasspath>
<classpathPrefix>lib/</classpathPrefix>
<mainClass>com.example.ChatBot</mainClass>
</manifest>
</archive>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<version>3.1.1</version>
<executions>
<execution>
<id>copy-dependencies</id>
<phase>package</phase>
<goals>
<goal>copy-dependencies</goal>
</goals>
<configuration>
<outputDirectory>${project.build.directory}/lib</outputDirectory>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>