Pytorch数据类型Tensor张量操作(操作比较全)

news2024/11/15 12:50:23

文章目录

  • Pytorch数据类型Tensor张量操作
    • 一.创建张量的方式
      • 1.创建无初始化张量
      • 2.创建随机张量
      • 3.创建初值为指定数值的张量
      • 4.从数据创建张量
      • 5.生成等差数列张量
    • 二.改变张量形状
    • 三.索引
    • 四.维度变换
      • 1.维度增加unsqueeze
      • 2.维度扩展expand
      • 3.维度减少squeeze
      • 4.维度扩展repeat
    • 五.维度交换
      • 1.简单的二维转置函数t:
      • 2.交换任意两个维度transpose
      • 3.重新排列原来的维度顺序permute
    • 六.张量合并
      • 1.cat操作
      • 2.stack操作
    • 七.张量的分割
      • 1.split操作
      • 2.chunk操作

Pytorch数据类型Tensor张量操作

本文只简单介绍pytorch中的对于张量的各种操作,主要列举介绍其大致用法和简单demo。后续更为详细的介绍会进行补充…

一.创建张量的方式

1.创建无初始化张量

  • torch.empty(3, 4) 创建未初始化内存的张量

2.创建随机张量

  • x = torch.rand(3, 4) 服从0~1间均匀分布
  • x = torch.randn(3, 4) 服从(0,1)的正态分布
  • x = torch.rand_like(y) 以rand方式随机创建一个和y形状相同的张量
  • x = torch.randint(1, 10, [3, 3]) 创建元素介于[1,10)的形状为(3,3)的随机张量

3.创建初值为指定数值的张量

  • x = torch.zeros(3, 4) 生成形状为(3,4)的初值全为0的张量
  • x = torch.full([3, 4], 6) 生成形状为(3,4)的初值全为6的张量
  • x = torch.eye(5, 5) 生成形状为(5,5)的单位阵

4.从数据创建张量

  • x = torch.tensor([1, 2, 3, 4, 5, 6]) 接收数据

  • torch.Tensor(3, 4) 接收tensor的维度

5.生成等差数列张量

  • x = torch.arange(0, 10) 生成[0,10)公差为1的等差数列张量
  • x = torch.arange(0, 10, 3) 生成[0,10)公差为3的等差数列张量

二.改变张量形状

view()与reshape()方法功能用法完全一致
通过传入改变后每一个维度的大小来重塑张量的形状:

x = x.view(2, 3)
x = x.reshape(2, 3)

view和reshape操作的示例:

a = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])
b = a.reshape(2, 4)
c = a.view(2, 4)
print(b)
print(c)

在这里插入图片描述

三.索引

y = x.index_select(0, torch.tensor([0, 2]))
第一个参数表示选择的维度,第二个参数以tensor的形式传入,选择该维度中的指定索引index

x = torch.tensor([
    [1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 10, 11, 12],
])
y = x.index_select(0, torch.tensor([0, 2]))
print(y)
y = x.index_select(1, torch.tensor([1, 2]))
print(y)

在这里插入图片描述
根据掩码获得打平后的指定索引张量:

mask = x.ge(5)
y = torch.masked_select(x, mask)

通过比较运算获得一个mask索引,然后将mask索引传入masked_select方法来获得打平后的新张量,具体示例如下:

x = torch.tensor([
    [1, 2, 0, 2],
    [3, 6, 1, 9],
    [-1, 7, -8, 1],
])
mask = x.ge(5)
y = torch.masked_select(x, mask)
print(y)
mask = x.gt(0)
y = torch.masked_select(x, mask)
print(y)
mask = x.lt(1)
y = torch.masked_select(x, mask)
print(y)

在这里插入图片描述

四.维度变换

1.维度增加unsqueeze

unsqueeze操作可以让张量在指定非负维度前插入新的维度,在负维度后插入新的维度,传入参数n表示指定的维度,即n若大于等于0则在n前插入新的维度,若n小于0则在n后插入新的维度:

x.unsqueeze(n)

假设原张量x的shape为(4,3,28,28),使用x.unsqueeze(0) 在0维度前插入新的维度后,张量的shape变为(1,4,3,28,28)。原张量y的shape为(2),使用y.unsqueeze(1)在维度1前插入新的维度后,张量的shape变为(2,1)。代码示例如下:

x = torch.randint(1, 10, [4, 3, 28, 28])
print(f"original shape: {x.shape}")
x = x.unsqueeze(0)
print(f"unsqueezed in dim 0: {x.shape}")
print("----------------------------------")
y = torch.tensor([3, 4])
print(f"original shape: {y.shape}")
m = y.unsqueeze(1)
print(f"unsqueezed in dim 1: {m.shape}\n{m}")
n = y.unsqueeze(0)
print(f"unsqueezed in dim 0: {n.shape}\n{n}")

运行结果:
在这里插入图片描述

2.维度扩展expand

x.expand(a, b, c, d) 操作将原来维度扩展为(a,b ,c ,d),传入n个参数a,b,c,d…表示维度扩展后的形状,其中当传入的维度上的参数为-1时表示该维度保持不变。

x.expand(a, b, c, d) 

使用expand只能扩张原来大小为1的维度,该维度扩张为n后的张量将在该维度上将数据复制n次,将原shape为(1,3,1)的张量扩展为shape为(2,3,4)的张量:

x = torch.randint(0, 2, [1, 3, 1])
y = x.expand(2, 3, 4)
print(f"original tensor in dim(1,3,1):\n{x}")
print(f"expanded tensor in dim(2,3,4):\n{y}")

运行结果:
在这里插入图片描述

3.维度减少squeeze

x.squeeze()操作可以压缩张量的维度,当不传入任何参数时,squeeze()操作压缩所有可以压缩的维度,当传入指定参数时,参数可以是负数,将压缩张量的指定维度。

x.squeeze()
x.squeeze(n)
x = torch.tensor([1, 2, 3, 4, 5, 6])
y = x.unsqueeze(1).unsqueeze(2).unsqueeze(0)
print(f"original shape :     {y.shape}")
print(f"squeezed in all dim: {y.squeeze().shape}")
print(f"squeezed in dim  0:  {y.squeeze(0).shape}")
print(f"squeezed in dim  1:  {y.squeeze(1).shape}")

运行结果:
在这里插入图片描述

4.维度扩展repeat

x.repeat(a,b,c,d) 在原来维度上分别拷贝a,b,c,d次

x.repeat(a, b, c, d)

原张量x的shape为(1,2,1),通过执行repeat(2,1,2)操作后shape变为(2,2,2),再通过repeat(1,3,5)操作后shape变为(2,6,10):

x = torch.tensor([1, 2]).reshape(1, 2, 1)
y = x.repeat(2, 1, 2)
z = y.repeat(1, 3, 5)
print(f"original tensor in dim(1,2,1): \n{x}")
print(f"repeated tensor in dim(2,2,2): \n{y}")
print(f"repeated tensor in dim(2,6,10): \n{z}")

在这里插入图片描述

五.维度交换

1.简单的二维转置函数t:

x.t()

2.交换任意两个维度transpose

x = torch.randint(1, 10, [2, 4, 3])
y = x.transpose(0, 2)
print(f"original tensor in shape(2,4,3):\n{x}")
print(f"transposed tensor in shape(3,4,2):\n{y}")

在这里插入图片描述

3.重新排列原来的维度顺序permute

permute操作用于重新排列维度顺序,传入的参数代表维度的索引,即dim a,dim b…

x.permute(a, b, c, d)

x.permute(1,2,0)的意义是将原来的1维度放到0维度的位置,将原来的2维度放到1维度的位置,将原来的0维度放到2维度的位置,以此重新排列维度顺序:

x = torch.tensor([
    [
        [1, 2, 3, 1],
        [4, 5, 3, 6],
        [1, 1, 0, 1]
    ],
    [
        [7, 8, 9, 1],
        [0, 2, 0, 3],
        [6, 5, 1, 8],
    ]
])

y = x.permute(1, 2, 0)
print(f"original shape: {x.shape}")
print(f"permuted shape: {y.shape}")
print(f"permuted tensor:\n{y}")

在这里插入图片描述

六.张量合并

1.cat操作

代码示例:

torch.cat([a,b], dim=0)

cat()函数中首先传入一个列表[a, b, c…]表示要合并的张量集合,然后传入一个维度dim=n,表示将这些张量在维度n上进行合并操作。
注意concat操作合并的维度上两个张量的维度大小可以不同,但是其余维度上必须具有相同的大小,例如(3,4,5)可以和(2,4,5)在0维度上concat合并为(5,4,5)。但是不能在1维度上合并,因为0维度上两个张量的维度大小不同,分别为3和2。

a = torch.tensor([
    [
        [1, 0, 1],
        [9, 1, 2],
        [3, 3, 1]
    ],
    [
        [0, 0, 1],
        [2, 5, 1],
        [3, 3, 2]
    ],
    [
        [4, 1, 10],
        [0, 2, 1],
        [1, 1, 1]
    ]
], dtype=int)

b = torch.tensor([
    [
        [0, 0, 2],
        [1, 10, 2],
        [2, 3, 0]
    ],
    [
        [0, 4, 1],
        [2, 0, 1],
        [1, 3, 6]
    ],
    [
        [0, 1, 4],
        [1, 2, 1],
        [1, 4, 1]
    ]
], dtype=int)

c = torch.cat([a, b], dim=0)
print(f"shape of A: {a.shape}")
print(f"shape of B: {b.shape}")
print(f"shape of A concat B: {c.shape}")
print(c)

运行结果:
在这里插入图片描述

2.stack操作

stack操作在合并维度处创建一个新的维度。
代码示例:

torch.stack([a, b], dim=0)
tensorA = torch.tensor([
    [1, 2, 3],
    [4, 5, 6]
])

tensorB = torch.tensor([
    [7, 8, 9],
    [3, 2, 1]
])
print(f"tensorA.shape:{tensorA.shape}")
print(f"tensorB.shape:{tensorB.shape}")
print("try to stack A with B in dim0:")
tensorC = torch.stack([tensorA, tensorB], dim=0)
print(f"tensorC.shape:{tensorC.shape}\n{tensorC}\n--------------------------")
print("try to stack A with B in dim1:")
tensorC = torch.stack([tensorA, tensorB], dim=1)
print(f"tensorC.shape:{tensorC.shape}\n{tensorC}\n--------------------------")
print("try to stack A with B in dim2:")
tensorC = torch.stack([tensorA, tensorB], dim=2)
print(f"tensorC.shape:{tensorC.shape}\n{tensorC}\n--------------------------")
print("try to stack A with B in dim3:")
tensorC = torch.stack([tensorA, tensorB], dim=3)
print(f"tensorC.shape:{tensorC.shape}")
print(tensorC)

运行结果:
在这里插入图片描述

七.张量的分割

1.split操作

split操作是对张量在指定维度上将张量进行分割,可以按给定长度等分,也可以通过列表传入分割方法。下面两种分割方式结果是相同的,第一种方式是将张量x在维度0上按照每一份长度为1进行等分;第二种方式是按照长度[1, 1, 1]的模式将张量x分成三份。

a, b, c = x.split(1, dim=0)
a, b, c = x.split([1, 1, 1], dim=0)
x = torch.tensor([
    [
        [1, 2, 1, 3],
        [0, 1, 2, 1],
        [9, 8, 1, 2]
    ],
    [
        [1, 2, 1, 2],
        [4, 2, 4, 4],
        [1, 0, 0, 0]
    ],
    [
        [3, 3, 3, 1],
        [1, 0, 2, 3],
        [5, 1, 2, 5]
    ]
])
print(x.shape)
a, b, c = x.split(1, dim=0)
print(f"a.shape:{a.shape}\nb.shape:{b.shape}\nc.shape:{c.shape}")
print("------------------------------------")
a, b = x.split([1, 2], dim=0)
print(f"a.shape:{a.shape}\nb.shape:{b.shape}")

在这里插入图片描述

2.chunk操作

chunk操作是对张量的某一维度按数量进行分割,首先传入第一个参数代表要分割成的份数,第二个参数指定了在哪一个维度上分割,下面的API样例代表将张量在维度0上分割为3个张:

a, b, c = x.chunk(3, dim=0)

对上例split中的张量x用chunk做分割的示例如下:

a, b, c = x.chunk(3, dim=1)
print(a.shape)
print(b.shape)
print(c.shape)
print("---------------------")
a, b = x.chunk(2, dim=2)
print(a.shape)
print(b.shape)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/673591.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringCloud Alibaba入门5之使用OpenFegin调用服务

我们继续在上一章的基础上进行开发 SpringCloud Alibaba入门4之nacos注册中心管理_qinxun2008081的博客-CSDN博客 Feign是一种声明式、模板化的HTTP客户端。使用Feign,可以做到声明式调用。Feign是在RestTemplate和Ribbon的基础上进一步封装,使用RestT…

SAP从入门到放弃系列之BOM行项目-虚拟装配-Part4

文章目录 虚拟组件(Phantom assemblies):作用:BOM中虚拟件维护的方式: 物料主数据维度BOM组件维度(数据优先级最高) BOM组件的展开类型:BOM组件的特殊采购类数据测试示例&#xff1…

基于open62541库的OPC UA协议节点信息查询及多节点数值读写案例实践

目录 一、OPC UA协议简介 二、open62541库简介 三、 opcua协议的多点查询、多点读写案例服务端opcua_server 3.1 opcua_server工程目录 3.2 程序源码 3.3 工程组织文件 3.4 编译及启动 四、opcua协议的多点查询、多点读写案例客户端opcua_client 4.1 opcua_client工程目录 4…

医院管理系统源码PACS超声科室源码DICOM影像工作站

一、医学影像系统(PACS)是一种应用于医院影像科室的系统,主要任务是将日常产生的各种医学影像(如核磁、CT、超声、X光机、红外仪、显微仪等设备产生的图像)通过各种接口(模拟、DICOM、网络)以数…

社区活动 | OpenVINO™ DevCon 中国系列工作坊第二期 | 使用 OpenVINO™ 加速生成式 AI...

生成式 AI 领域一直在快速发展,许多潜在应用随之而来,这些应用可以从根本上改变人机交互与协作的未来。这一最新进展的一个例子是 GPT 模型的发布,它具有解决复杂问题的能力,比如通过医学和法律考试这种类似于人类的能力。然而&am…

Android Studio实现推箱子小游戏

项目目录 一、项目概述二、开发环境三、详细设计四、运行演示五、项目总结 一、项目概述 推箱子是一款非常受欢迎的益智游戏,游戏的玩法简单,但是需要玩家具备一定的逻辑思维能力和空间感知能力,因此深受广大玩家的喜爱。在游戏中&#xff0…

正点原子F4HAL库串口中断再解读

七步走,参考usart.c文件 void HAL_UART_MspInit(UART_HandleTypeDef *huart) 这个函数进行了(1)、(2)、(3)、(5)中的使能中断 void uart_init(u32 bound)函数进行了&…

『手撕 Mybatis 源码』07 - Proxy 对象创建

Proxy 对象创建 问题 sqlSession.getMapper(UserMapper.class) 是如何生成的代理对象? Mapper 代理方式初始化完成后,下一步进行获取代理对象来执行 public class MybatisTest {/*** 问题2:sqlSession.getMapper(UserMapper.class); 是如…

EMC学习笔记(五)传输线模型及反射、串扰

1.概述 在高速数字电路PCB设计中,当布线长度大于20分之一波长或信号延时超过6分之一信号上升沿时,PCB布线可被视为传输线。传输线有两种类型:微带线和带状线。与EMC设计有关的传输线特性包括:特征阻抗、传输延迟、固有电容和固有电感。反射与串扰会影响…

2023年第1季社区Task挑战赛贡献者榜单

基于数字身份凭证的业务逻辑设计,贡献了发放数字身份凭证的参考实现;提供企业碳排放、慈善公益等智能合约库业务场景案例;体验最新发布的WeCross-BCOS3-Stub,跟社区核心开发者碰撞想法并给出自己的见解……这些精彩贡献展现出社区…

<C++项目>高并发内存池

项目介绍: 原型是goole的开源项目tcmalloc(全称:Thread-Caching Malloc),用于替代系统的内存分配相关的函数(malloc, free).知名度非常高。 项目要求知识储备和难度: 会用到C/C、数据结构(链表、哈希桶)、操作系统内存管理、单例模式、多线程、互斥锁等等…

设计模式—“行为变化”

在组件构建过程中,组件行为的变化经常导致组件本身剧烈的变化。“行为变化”模式将组件的行为和组件本身进行解耦,从而支持组件行为的变化,实现两者之间的松耦合。 典型模式有:Command、Visitor 一、Command 动机 在软件构建过程中,"行为请求者"与“行为实现…

看完这篇,立马看懂理想首款纯电MEGA

作者 | 马波编辑 | 德新 6月17日,理想召开了首届家庭科技日活动。 这场打着家庭幌子的科技发布会,信息密度高到有些超出预期。但是看完这场发布会,理想超级旗舰车型 W01,也就是同时在本场发布会公布名称的理想MEGA,它…

硅谷之火重燃武大

关注、星标公众号,直达精彩内容 来源:技术让梦想更伟大 作者:李肖遥 昨天看到雷军雷总在武汉大学的毕业典礼上,朴实的演讲,看似吹牛,实则也是一种勉励。 雷军大学一年级时,在武大图书馆看到一本…

基于java,springboot的音乐分享平台

背景 音乐网站与分享平台的主要使用者分为管理员和用户,实现功能包括管理员:首页、个人中心、用户管理、音乐资讯管理、音乐翻唱管理、在线听歌管理、留言板管理、系统管理,用户:首页、个人中心、音乐翻唱管理、我的收藏管理&…

MySQL - 单表数据量大表优化方案

一. 前言 当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化。 二. 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整…

软考:软件工程:软件开发与测试,黑盒测试,白盒测试

软考:软件工程: 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都是需要细心准备的 (1&#…

年轻人的储蓄困境:愿望与现实的交锋(原因及解决之道)

年轻人存款难吗?探讨年轻人存款问题是目前社会热议的话题之一。最近的一项调查称,大约五分之一的年轻人存款在一万元以内,而存款超过10万元的年轻人只占总人数的53.7%。这一数据引发了广泛的关注和讨论,究竟是什么原因导致了年轻人…

基于开源项目二次开发KKPrinter实现打印机共享,远程跨网络实现不同网络打印机共享,客户端利用虚拟打印机截取打印文件转发至物理打印机(附源码)

基于开源项目二次开发KKPrinter实现打印机共享,远程跨网络实现不同网络打印机共享,客户端利用虚拟打印机截取打印文件转发至物理打印机(附源码)。实现方案有很多种,这里主要介绍 2 种,并附详细的实现过程和…

MySQL学习笔记之索引优化与查询优化

文章目录 前言数据准备建表创建函数插入数据创建删除索引函数 索引失效案例全值匹配最佳左前缀法则主键插入顺序计算、函数导致列索引失效函数导致索引失效计算导致索引失效 类型转换导致列索引失效范围条件右边的列索引失效不等于导致列索引失效is not null不能使用索引like以…