数据烦恼?亮数据平台为你提供一站式解决方案

news2025/1/16 18:04:14

在这里插入图片描述

前言: Hello大家好,我是Dream。 在当今数字时代,大型和实时的数据集具有更全面的信息、更准确的预测、和更好的竞争优势。作为一位刚被数据折磨过的人,我必须要把自己的经验跟大家分享一下,让大家和公司在收集数据方面少走一点弯路。

一、数据难收集成了当下的大问题

前段时间,Dream的一位朋友突然联系了我,自从那年毕业后,也就不再联系了,只知道她目前是一家头部出境电商公司的海外市场部经理,负责各大外网社交媒体上的KOL运营,这些媒体包括Ins,以及红遍全球的TikTok等,事业也正处在上升期,可最近却遇到了令她十分头痛的问题。 因为知道我是一名博主,认识的人和平台会多一点,想让我帮她出出主意。
通过和她简单的沟通,我了解她想要去找到TikTok以及Ins上面的红人。然而,每天数以亿计的视频在平台上上传和观看,用户数量也不断增长。要去找这些外网平台的KOL数据,除了需要代理IP网络,还需要技术团队去挖掘,数据庞大,挖掘和更新需要大量人力物力,她需要一种更高效的解决方案。
说到这,给大家科普一下数据的重要性。 在类似于TikTok的平台上,数据分析和抓住热门话题是提升签约博主视频利益的关键。通过数据分析和抓住热门话题,吸引更多的流量和市场份额,帮助公司实现更好的业绩和影响力。

二、靠谱的数据平台–亮数据

面对这个问题,她开始寻找解决方案。他咨询了同事、研究了市场上的不同工具和平台,但仍然没有找到满意的答案。她也是十分着急和担心,因为这对她来说是一次很好的升职机会,自己不想错过。看在当年的好朋友这么着急,Dream想起来那年的同窗时光,甚是感慨,于是下决心要帮助她把这件事情做好。
在寻找数据的过程中,我发现网上的大多数可以找的数据都存在着或多或小的问题,有的因为年代久远不具有实时性,而有的又不那么全面,并且满足不了我们自身的个性化需求。
于是,我联系了我认识的所有互联网公司,向他们请教经验和帮助,从他们口中我知道了亮数据平台
听到这个消息,我心中顿时涌起了一丝希望。赶紧去网站注册和使用起来。
经过简单的操作,我发现此平台使用起来十分方便快捷!
登陆之后,我们直接选择查看数据产品,找到数据集商场,我惊喜的发现其中的数据集真的是又大又全面!在这里可以获取使用方便、结构化的、准确的公开网络Web 数据,于是我找到了我所需要的TikTok数据集
在这里插入图片描述
此数据集全面又实时,其中包含经过验证的个人资料、关注者、喜欢、创建日期等数据点。并且我可以给根据自己的需要,设置个性化的自定义子集!
在这里插入图片描述
在这里我自定义了自己的数据集,我只选取了用户的id、视频种类type以及评论数comment,将数据集data保存在本地。
然后首先将保存在本地的data文件,进行一个简单的数据处理,剔除掉一些空白的数据(一些用户可能从来不评论视频):

import pandas as pd

# 读取Excel文件
df = pd.read_excel('data.xlsx')

# 数据清洗
df.dropna(subset=['id', 'type', 'comment'], inplace=True)

# 保存清洗后的结果
df.to_excel('cleaned_data.xlsx', index=False)

经过清洗完毕的数据,我们进行一个简单的可视化:

import pandas as pd
import matplotlib.pyplot as plt

# 读取Excel文件
df = pd.read_excel('cleaned_data.xlsx')

# 绘制关系图表
plt.scatter(df['type'], df['comment'])
plt.xlabel('Type')
plt.ylabel('Comment')
plt.title('Relationship between Type and Comment')
plt.show()

我们使用pd.read_excel()函数读取名为data.xlsx的Excel文件,并将其存储在一个名为df的DataFrame对象中。然后,我们使用plt.scatter()函数绘制散点图,其中df['type']表示x轴上的数据,df['comment']表示y轴上的数据。通过设置适当的x轴标签、y轴标签和标题,我们可以自定义图表的外观。最后,使用plt.show()函数显示图表。

使用散点图可以帮助观察typecomment之间的关系:
在这里插入图片描述
然后使用scikit-learn库进行文本预处理和线性回归建模:

import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

# 读取Excel文件
df = pd.read_excel('data.xlsx')

# 特征工程
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(df['comment'])
y = df['type']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 模型训练
model = LinearRegression()
model.fit(X_train, y_train)

# 模型评估
score = model.score(X_test, y_test)
print("模型准确率:", score)

我们使用pd.read_excel()函数读取名为data.xlsx的Excel文件,并将其存储在一个名为df的DataFrame对象中。然后,我们使用CountVectorizer()进行文本预处理,将comment列转换为词频矩阵表示。接下来,我们将comment矩阵(X)作为输入变量,将type列(y)作为输出变量,使用train_test_split()函数划分训练集和测试集。最后,我们使用LinearRegression()模型进行训练,并使用score()函数计算模型的准确率。

最终,根据分布、相关性我们可以的得到一个非常有趣的结论,随着用户喜欢视频的种类的增加,我们发现用户评论的几率会更大(以100%为单位),并且看视频喜欢评论的人总是战比很少的一部分。这也充分说明了当用户看到一个喜欢的视频,只是会去点上一个喜欢,并不会去评论视频。

三、全面丰富且实时的数据集

在使用了亮数据平台之后,我快速准确地收集到了需要的数据,分析得到了我所需要的结果。每条数据仅需要0.006dollar,我采用了两万条数据,整个数据集大约花费了我120dollar,对比之下还是相当便宜的。
并且除了TikTok数据集外,几乎当下所有公开的数据集你都可以在其中找的,最重要的是这个数据集是最新的! 比如当下较为流行的来识别亚马逊美国的畅销产品和产品库存变化得Amazon数据集,每条数据记录仅需要0.0028dollar;以及获取新产品、类别、定价和消费者评论的完整快照的沃尔玛产品数据集和映射您的生态系统以进行战略业务决策和竞争分析的 Crunchbase 数据集,在这里都可以用低价获取到!可以说这是我们在任何地方都无法获取到的第一手信息,但是在这里我们便可以轻松实现。
帮完朋友,这个亮数据成功撩起了我的兴趣,各方面搜搜看看,发现这家公司原来是代理IP网络起家,境外IP十分强大,号称全球 195个国家,7200万IP覆盖! 然后还研发不少很牛的数据采集工具和软件,尝试了最新款的亮数据爬虫浏览器,十分新颖,可以说是市场上首款…这就解答了为什么他们的外网数据集这么好用的原因,人家自己有代理IP网络,自己有技术,这数据集不是水到渠成吗?
在这个数字时代,数据的力量是无可忽视的,掌握最新最全面的数据可以帮助我们在竞争激烈的市场中脱颖而出。因为我自己在收集数据方面走过弯路,所以我把自己的经验写下来传递给大家,希望大家可以更轻松的解决这个问题!
如果你和你的公司还在为数据烦恼的话,试试看!:亮数据----全球网络数据一站式平台
🌲🌲🌲 好啦,这就是今天要分享给大家的全部内容了,我们下期再见!

本期推荐:
Windows PowerShell自动化运维大全
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/666694.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

构筑数字化新引擎!美创助力金华银行核心系统国产分布式数据库迁移

近日,金华银行举行“星辉工程”核心项目群上线发布会,新一代核心系统成功部署在国产分布式数据库OceanBase,向业务高效创新、数智赋能迈出了重要一步。据悉,这是浙江省首例基于完全国产自研数据库落地的银行核心系统。 此次“星辉…

[PyTorch][chapter 43][时间序列表示方法1]

前言: 语言模型(LM)起源于语音识别(speech recognition),输入一段音频数据,语音识别系统通常会生成多个句子作为候选,究竟哪个句子更合理?就需要用到语言模型对候选句子进行排序。 language mod…

【算法题解】40. 数组的度

这是一道 简单 题 https://leetcode.cn/problems/degree-of-an-array/ 题目 给定一个非空且只包含非负数的整数数组 nums,数组的 度 的定义是指数组里任一元素出现频数的最大值。 你的任务是在 nums 中找到与 nums 拥有相同大小的度的最短连续子数组,返…

谈找工作途径

谈找工作 目录概述需求: 设计思路实现思路分析1.51job2.拉钩 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a better result,wait for change,challenge Survi…

QT日历制作

文章目录 前言一、QCalendar 类介绍二、界面布局三、代码讲解1. lable 添加图片2. 设置主窗口背景色3. 日历显示改变网格线颜色4. 显示表头日期 总结 前言 在 Qt 中,QCalendar 类是提供日历功能的类。它用于操作和管理日期和时间信息,包括日期计算、日期…

为什么黑客不黑赌博软件?如何成为一名顶级黑客?

攻击了,只是你不知道而已! 同样,对方也不会通知你,告诉你他黑了赌博网站。 攻击赌博网站的不一定是正义的黑客,也可能是因赌博输钱而误入歧途的法外狂徒。之前看过一个警方破获的真实案件:28岁小伙因赌博…

Java安装配置教程,2023年最新版,全部版本看这一篇就够了!!

JDK新手无脑安装配置教程❤❤❤ JDK下载网址 ps:如果你的JDK版本在官网没有找到,可以通过第三方资源进行下载,下载安装配置教程是通用的 官方链接>https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html 安装步骤…

【Leetcode60天带刷】day17二叉树——110.平衡二叉树 , 257. 二叉树的所有路径 ,404.左叶子之和

题目: 110. 平衡二叉树 给定一个二叉树,判断它是否是高度平衡的二叉树。 本题中,一棵高度平衡二叉树定义为: 一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。 示例 1: 输入:root [3,9,20…

SpringBoot + Vue前后端分离项目实战 || 二:Spring Boot后端与数据库连接

系列文章: SpringBoot Vue前后端分离项目实战 || 一:Vue前端设计 文章目录 新建Spring后台项目添加依赖 新建数据库IDEA 连接数据库IDEA 自动创建类实体定义数据传递至前端的格式 B站视频讲解:2023全网最简单但实用的SpringBootVue前后端分离…

DJ4-4 NAT、ICMP、IPv6

目录 一、NAT:网络地址转换 1、工作原理 2、NAT 的限制 二、ICMP 1、ICMP 协议 2、ICMP 类型和代码 3、Traceroute 命令 三、IPv6 地址 1、IPv6 的引入 2、IPv6 的表示 一、NAT:网络地址转换 动机:对外部网络来讲,本地…

RISC-V处理器的设计与实现——基本指令集

本人小白一枚,在学习FPGA的过程中偶然刷到了tinyriscv这个开源项目,并且自己对计算机体系结构的知识也很感兴趣,所以想参考这个开源项目做一个基于RISC-V指令集的CPU,下面是tinyriscv这个开源项目的地址,本项目很多思路…

优思学院|六西格玛倡导者与项目赞助人是什么角色?有何区别?

倡导者(Champion)和项目赞助人(Sponsor)在正式的六西格玛的组织架构中是两个不同的角色,所以希望在这篇文章中解释一下两个角色的区别。 倡导者(Champion)是负责组织竞争力和增长的董事和高管&…

quartus 无法识别usb blaster

一、Windows无法正常驱动USB-Blaster 问题:驱动问题 解决方法: 右键我的电脑->管理->设备管理器找到设备USB-Blaster,此时是带有黄色感叹号的 3.右键->更新驱动程序软件 4. 选择“浏览计算机以查找驱动程序软件(R)”,如选择自动搜索是不能安装成功的,…

jQuery 基础语法使用指南

🎉🎉🎉点进来你就是我的人了博主主页:🙈🙈🙈戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔🤺🤺🤺 目录 1. 引入 jQuery 2. jQuery 语法 3. 选择器 …

FusionComputeV100R006C10SPC101平台安装win10踩坑记

生产环境中有一套华为FusionCompute,版本比较老,V100R006C10SPC101,该产品已EOS了,无法升级。因业务需要,需安装Windows10系统,遇到了不少坑,在此记录一下。 一、坑1:Windows10版本…

CAN总线终端电阻

CAN总线终端电阻,一般来说都是120欧姆,实际上在设计的时候,也是两个60欧姆的电阻串起来,而总线上一般有两个120Ω的节点,基本上稍微知道点CAN总线的人都知道这个道理。 但是这两个终端电阻的具体作用是什么呢&#xf…

迅为视频教程 | RKNPU2 从入门到实践一套搞定!

迅为基于瑞芯微RK3568和RK3588处理器设计开发的两款开发板都自带NPU,RK3568自带1T算力的NPU、RK3588自带6T算力的NPU,且这两款开发板使用的都是RKNPU2。 (RKNPU发展历程) RKNPU2较RKNPU1有较大的提升,但市面…

Unity核心9——3D动画

一、3D 动画的使用 ​ 使用导入的 3D 动画: 将模型拖入场景中为模型对象添加 Animator 脚本为其创建 Animator Controller 动画控制器(状态机)将想要使用的相关动作,拖入 Animator Controller 动画控制器(状态机&…

Java:时间日期类

文章目录 DateCalendarDate/Time APILocalDateLocalTimeLocalDateTimeZonedDateTime 功能获取标准时间 参考文献 Date 同样位于java.util包下。 在java中,获取时间最简单的方式就是直接实例化Date类。 以自定义格式,取当前的时间日期: Da…

渗透测试入门指南之小白该如何学习渗透?

前言: 内容都是精华,如果想要入安全的行,强烈建议仔细阅读。 目录: 渗透测试是什么? 学习渗透测试的战略方针是什么? 学习渗透测试的具体方法是什么? 遇到的各种疑难杂症怎么解决&#xf…