深度学习(22)——YOLO系列(2)

news2024/11/15 10:52:03

深度学习(22)——YOLO系列(2)

文章目录

  • 深度学习(22)——YOLO系列(2)
    • 1. model
    • 2. dataset
    • 3. utils
    • 4. test/detect
    • 5. detect全过程

今天先写YOLO v3的代码,后面再出v5,v7。
特此说明:训练使用的COCO数据量太大了,我不想下载,我就直接用test做测试了,但是里面的代码核心还是一样的。当然我会把train的代码也放在这里大家可以用在自己的数据上训练。

1. model

model.py

from __future__ import division

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np

from utils.parse_config import *
from utils.utils import build_targets, to_cpu, non_max_suppression

import matplotlib.pyplot as plt
import matplotlib.patches as patches


def create_modules(module_defs):
    """
    Constructs module list of layer blocks from module configuration in module_defs
    """
    hyperparams = module_defs.pop(0)
    output_filters = [int(hyperparams["channels"])]
    module_list = nn.ModuleList()
    for module_i, module_def in enumerate(module_defs):
        modules = nn.Sequential()

        if module_def["type"] == "convolutional":
            bn = int(module_def["batch_normalize"])
            filters = int(module_def["filters"])
            kernel_size = int(module_def["size"])
            pad = (kernel_size - 1) // 2
            modules.add_module(
                f"conv_{module_i}",
                nn.Conv2d(
                    in_channels=output_filters[-1],
                    out_channels=filters,
                    kernel_size=kernel_size,
                    stride=int(module_def["stride"]),
                    padding=pad,
                    bias=not bn,
                ),
            )
            if bn:
                modules.add_module(f"batch_norm_{module_i}", nn.BatchNorm2d(filters, momentum=0.9, eps=1e-5))
            if module_def["activation"] == "leaky":
                modules.add_module(f"leaky_{module_i}", nn.LeakyReLU(0.1))

        elif module_def["type"] == "maxpool":
            kernel_size = int(module_def["size"])
            stride = int(module_def["stride"])
            if kernel_size == 2 and stride == 1:
                modules.add_module(f"_debug_padding_{module_i}", nn.ZeroPad2d((0, 1, 0, 1)))
            maxpool = nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=int((kernel_size - 1) // 2))
            modules.add_module(f"maxpool_{module_i}", maxpool)

        elif module_def["type"] == "upsample":
            upsample = Upsample(scale_factor=int(module_def["stride"]), mode="nearest")
            modules.add_module(f"upsample_{module_i}", upsample)

        elif module_def["type"] == "route": # 输入1:26*26*256 输入2:26*26*128  输出:26*26*(256+128)
            layers = [int(x) for x in module_def["layers"].split(",")]
            filters = sum([output_filters[1:][i] for i in layers])
            modules.add_module(f"route_{module_i}", EmptyLayer())

        elif module_def["type"] == "shortcut":
            filters = output_filters[1:][int(module_def["from"])]
            modules.add_module(f"shortcut_{module_i}", EmptyLayer())

        elif module_def["type"] == "yolo":
            anchor_idxs = [int(x) for x in module_def["mask"].split(",")]
            # Extract anchors
            anchors = [int(x) for x in module_def["anchors"].split(",")]
            anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)]
            anchors = [anchors[i] for i in anchor_idxs]
            num_classes = int(module_def["classes"])
            img_size = int(hyperparams["height"])
            # Define detection layer
            yolo_layer = YOLOLayer(anchors, num_classes, img_size)
            modules.add_module(f"yolo_{module_i}", yolo_layer)
        # Register module list and number of output filters
        module_list.append(modules)
        output_filters.append(filters)

    return hyperparams, module_list


class Upsample(nn.Module):
    """ nn.Upsample is deprecated """

    def __init__(self, scale_factor, mode="nearest"):
        super(Upsample, self).__init__()
        self.scale_factor = scale_factor
        self.mode = mode

    def forward(self, x):
        x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode)
        return x


class EmptyLayer(nn.Module):
    """Placeholder for 'route' and 'shortcut' layers"""

    def __init__(self):
        super(EmptyLayer, self).__init__()


class YOLOLayer(nn.Module):
    """Detection layer"""

    def __init__(self, anchors, num_classes, img_dim=416):
        super(YOLOLayer, self).__init__()
        self.anchors = anchors
        self.num_anchors = len(anchors)
        self.num_classes = num_classes
        self.ignore_thres = 0.5
        self.mse_loss = nn.MSELoss()
        self.bce_loss = nn.BCELoss()
        self.obj_scale = 1
        self.noobj_scale = 100
        self.metrics = {}
        self.img_dim = img_dim
        self.grid_size = 0  # grid size

    def compute_grid_offsets(self, grid_size, cuda=True):
        self.grid_size = grid_size
        g = self.grid_size
        FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
        self.stride = self.img_dim / self.grid_size
        # Calculate offsets for each grid
        self.grid_x = torch.arange(g).repeat(g, 1).view([1, 1, g, g]).type(FloatTensor)
        self.grid_y = torch.arange(g).repeat(g, 1).t().view([1, 1, g, g]).type(FloatTensor)
        self.scaled_anchors = FloatTensor([(a_w / self.stride, a_h / self.stride) for a_w, a_h in self.anchors])
        self.anchor_w = self.scaled_anchors[:, 0:1].view((1, self.num_anchors, 1, 1))
        self.anchor_h = self.scaled_anchors[:, 1:2].view((1, self.num_anchors, 1, 1))

    def forward(self, x, targets=None, img_dim=None):
        # Tensors for cuda support
        print (x.shape)
        FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
        LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
        ByteTensor = torch.cuda.ByteTensor if x.is_cuda else torch.ByteTensor

        self.img_dim = img_dim
        num_samples = x.size(0)
        grid_size = x.size(2)

        prediction = (
            x.view(num_samples, self.num_anchors, self.num_classes + 5, grid_size, grid_size)
            .permute(0, 1, 3, 4, 2)
            .contiguous()
        )
        print (prediction.shape)
        # Get outputs
        x = torch.sigmoid(prediction[..., 0])  # Center x
        y = torch.sigmoid(prediction[..., 1])  # Center y
        w = prediction[..., 2]  # Width
        h = prediction[..., 3]  # Height
        pred_conf = torch.sigmoid(prediction[..., 4])  # Conf
        pred_cls = torch.sigmoid(prediction[..., 5:])  # Cls pred.

        # If grid size does not match current we compute new offsets
        if grid_size != self.grid_size:
            self.compute_grid_offsets(grid_size, cuda=x.is_cuda) #相对位置得到对应的绝对位置比如之前的位置是0.5,0.5变为 11.5,11.5这样的

        # Add offset and scale with anchors #特征图中的实际位置
        pred_boxes = FloatTensor(prediction[..., :4].shape)
        pred_boxes[..., 0] = x.data + self.grid_x
        pred_boxes[..., 1] = y.data + self.grid_y
        pred_boxes[..., 2] = torch.exp(w.data) * self.anchor_w
        pred_boxes[..., 3] = torch.exp(h.data) * self.anchor_h

        output = torch.cat( 
            (
                pred_boxes.view(num_samples, -1, 4) * self.stride, #还原到原始图中
                pred_conf.view(num_samples, -1, 1),
                pred_cls.view(num_samples, -1, self.num_classes),
            ),
            -1,
        )

        if targets is None:
            return output, 0
        else:
            iou_scores, class_mask, obj_mask, noobj_mask, tx, ty, tw, th, tcls, tconf = build_targets(
                pred_boxes=pred_boxes,
                pred_cls=pred_cls,
                target=targets,
                anchors=self.scaled_anchors,
                ignore_thres=self.ignore_thres,
            )
            # iou_scores:真实值与最匹配的anchor的IOU得分值 class_mask:分类正确的索引  obj_mask:目标框所在位置的最好anchor置为1 noobj_mask obj_mask那里置0,还有计算的iou大于阈值的也置0,其他都为1 tx, ty, tw, th, 对应的对于该大小的特征图的xywh目标值也就是我们需要拟合的值 tconf 目标置信度
            # Loss : Mask outputs to ignore non-existing objects (except with conf. loss)
            loss_x = self.mse_loss(x[obj_mask], tx[obj_mask]) # 只计算有目标的
            loss_y = self.mse_loss(y[obj_mask], ty[obj_mask])
            loss_w = self.mse_loss(w[obj_mask], tw[obj_mask])
            loss_h = self.mse_loss(h[obj_mask], th[obj_mask])
            loss_conf_obj = self.bce_loss(pred_conf[obj_mask], tconf[obj_mask]) 
            loss_conf_noobj = self.bce_loss(pred_conf[noobj_mask], tconf[noobj_mask])
            loss_conf = self.obj_scale * loss_conf_obj + self.noobj_scale * loss_conf_noobj #有物体越接近1越好 没物体的越接近0越好
            loss_cls = self.bce_loss(pred_cls[obj_mask], tcls[obj_mask]) #分类损失
            total_loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls #总损失

            # Metrics
            cls_acc = 100 * class_mask[obj_mask].mean()
            conf_obj = pred_conf[obj_mask].mean()
            conf_noobj = pred_conf[noobj_mask].mean()
            conf50 = (pred_conf > 0.5).float()
            iou50 = (iou_scores > 0.5).float()
            iou75 = (iou_scores > 0.75).float()
            detected_mask = conf50 * class_mask * tconf
            precision = torch.sum(iou50 * detected_mask) / (conf50.sum() + 1e-16)
            recall50 = torch.sum(iou50 * detected_mask) / (obj_mask.sum() + 1e-16)
            recall75 = torch.sum(iou75 * detected_mask) / (obj_mask.sum() + 1e-16)

            self.metrics = {
                "loss": to_cpu(total_loss).item(),
                "x": to_cpu(loss_x).item(),
                "y": to_cpu(loss_y).item(),
                "w": to_cpu(loss_w).item(),
                "h": to_cpu(loss_h).item(),
                "conf": to_cpu(loss_conf).item(),
                "cls": to_cpu(loss_cls).item(),
                "cls_acc": to_cpu(cls_acc).item(),
                "recall50": to_cpu(recall50).item(),
                "recall75": to_cpu(recall75).item(),
                "precision": to_cpu(precision).item(),
                "conf_obj": to_cpu(conf_obj).item(),
                "conf_noobj": to_cpu(conf_noobj).item(),
                "grid_size": grid_size,
            }

            return output, total_loss


class Darknet(nn.Module):
    """YOLOv3 object detection model"""

    def __init__(self, config_path, img_size=416):
        super(Darknet, self).__init__()
        self.module_defs = parse_model_config(config_path)
        self.hyperparams, self.module_list = create_modules(self.module_defs)
        self.yolo_layers = [layer[0] for layer in self.module_list if hasattr(layer[0], "metrics")]
        self.img_size = img_size
        self.seen = 0
        self.header_info = np.array([0, 0, 0, self.seen, 0], dtype=np.int32)

    def forward(self, x, targets=None):
        img_dim = x.shape[2]
        loss = 0
        layer_outputs, yolo_outputs = [], []
        for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)):
            if module_def["type"] in ["convolutional", "upsample", "maxpool"]:
                x = module(x)
            elif module_def["type"] == "route":
                x = torch.cat([layer_outputs[int(layer_i)] for layer_i in module_def["layers"].split(",")], 1)
            elif module_def["type"] == "shortcut": # 残差连接(位相加)
                layer_i = int(module_def["from"])
                x = layer_outputs[-1] + layer_outputs[layer_i]
            elif module_def["type"] == "yolo":
                x, layer_loss = module[0](x, targets, img_dim)
                loss += layer_loss
                yolo_outputs.append(x)
            layer_outputs.append(x)
        yolo_outputs = to_cpu(torch.cat(yolo_outputs, 1))
        return yolo_outputs if targets is None else (loss, yolo_outputs)

    def load_darknet_weights(self, weights_path):
        """Parses and loads the weights stored in 'weights_path'"""

        # Open the weights file
        with open(weights_path, "rb") as f:
            header = np.fromfile(f, dtype=np.int32, count=5)  # First five are header values
            self.header_info = header  # Needed to write header when saving weights
            self.seen = header[3]  # number of images seen during training
            weights = np.fromfile(f, dtype=np.float32)  # The rest are weights

        # Establish cutoff for loading backbone weights
        cutoff = None
        if "darknet53.conv.74" in weights_path:
            cutoff = 75

        ptr = 0
        for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)):
            if i == cutoff:
                break
            if module_def["type"] == "convolutional":
                conv_layer = module[0]
                if module_def["batch_normalize"]:
                    # Load BN bias, weights, running mean and running variance
                    bn_layer = module[1]
                    num_b = bn_layer.bias.numel()  # Number of biases
                    # Bias
                    bn_b = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.bias)
                    bn_layer.bias.data.copy_(bn_b)
                    ptr += num_b
                    # Weight
                    bn_w = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.weight)
                    bn_layer.weight.data.copy_(bn_w)
                    ptr += num_b
                    # Running Mean
                    bn_rm = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.running_mean)
                    bn_layer.running_mean.data.copy_(bn_rm)
                    ptr += num_b
                    # Running Var
                    bn_rv = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.running_var)
                    bn_layer.running_var.data.copy_(bn_rv)
                    ptr += num_b
                else:
                    # Load conv. bias
                    num_b = conv_layer.bias.numel()
                    conv_b = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(conv_layer.bias)
                    conv_layer.bias.data.copy_(conv_b)
                    ptr += num_b
                # Load conv. weights
                num_w = conv_layer.weight.numel()
                conv_w = torch.from_numpy(weights[ptr : ptr + num_w]).view_as(conv_layer.weight)
                conv_layer.weight.data.copy_(conv_w)
                ptr += num_w

    def save_darknet_weights(self, path, cutoff=-1):
        """
            @:param path    - path of the new weights file
            @:param cutoff  - save layers between 0 and cutoff (cutoff = -1 -> all are saved)
        """
        fp = open(path, "wb")
        self.header_info[3] = self.seen
        self.header_info.tofile(fp)

        # Iterate through layers
        for i, (module_def, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
            if module_def["type"] == "convolutional":
                conv_layer = module[0]
                # If batch norm, load bn first
                if module_def["batch_normalize"]:
                    bn_layer = module[1]
                    bn_layer.bias.data.cpu().numpy().tofile(fp)
                    bn_layer.weight.data.cpu().numpy().tofile(fp)
                    bn_layer.running_mean.data.cpu().numpy().tofile(fp)
                    bn_layer.running_var.data.cpu().numpy().tofile(fp)
                # Load conv bias
                else:
                    conv_layer.bias.data.cpu().numpy().tofile(fp)
                # Load conv weights
                conv_layer.weight.data.cpu().numpy().tofile(fp)

        fp.close()

在这里插入图片描述
在这里插入图片描述
一共三个yolo层
模型定义这一块:叫做darknet,其中最重要的部分就是YOLO层。还有一个容易混淆的地方:route和shortcut层,前者是拼接,后者是残差连接的位相加。

2. dataset

dataset.py

import glob
import random
import os
import sys
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F

from utils.augmentations import horisontal_flip
from torch.utils.data import Dataset
import torchvision.transforms as transforms

def pad_to_square(img, pad_value):
    c, h, w = img.shape
    dim_diff = np.abs(h - w)
    # (upper / left) padding and (lower / right) padding
    pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2
    # Determine padding
    pad = (0, 0, pad1, pad2) if h <= w else (pad1, pad2, 0, 0)
    # Add padding
    img = F.pad(img, pad, "constant", value=pad_value)

    return img, pad


def resize(image, size):
    image = F.interpolate(image.unsqueeze(0), size=size, mode="nearest").squeeze(0)
    return image


def random_resize(images, min_size=288, max_size=448):
    new_size = random.sample(list(range(min_size, max_size + 1, 32)), 1)[0]
    images = F.interpolate(images, size=new_size, mode="nearest")
    return images


class ImageFolder(Dataset):
    def __init__(self, folder_path, img_size=416):
        self.files = sorted(glob.glob("%s/*.*" % folder_path))
        self.img_size = img_size

    def __getitem__(self, index):
        img_path = self.files[index % len(self.files)]
        # Extract image as PyTorch tensor
        img = transforms.ToTensor()(Image.open(img_path))
        # Pad to square resolution
        img, _ = pad_to_square(img, 0)
        # Resize
        img = resize(img, self.img_size)

        return img_path, img

    def __len__(self):
        return len(self.files)


class ListDataset(Dataset):
    def __init__(self, list_path, img_size=416, augment=True, multiscale=True, normalized_labels=True):
        with open(list_path, "r") as file:
            self.img_files = file.readlines()

        self.label_files = [
            path.replace("images", "labels").replace(".png", ".txt").replace(".jpg", ".txt")
            for path in self.img_files
        ]
        self.img_size = img_size
        self.max_objects = 100
        self.augment = augment
        self.multiscale = multiscale
        self.normalized_labels = normalized_labels
        self.min_size = self.img_size - 3 * 32
        self.max_size = self.img_size + 3 * 32
        self.batch_count = 0

    def __getitem__(self, index):

        # ---------
        #  Image
        # ---------

        img_path = self.img_files[index % len(self.img_files)].rstrip()
        img_path = r'../YOLOv3/data/coco' + img_path
        #print (img_path)
        # Extract image as PyTorch tensor
        img = transforms.ToTensor()(Image.open(img_path).convert('RGB'))

        # Handle images with less than three channels
        if len(img.shape) != 3:
            img = img.unsqueeze(0)
            img = img.expand((3, img.shape[1:]))

        _, h, w = img.shape
        h_factor, w_factor = (h, w) if self.normalized_labels else (1, 1)
        # Pad to square resolution
        img, pad = pad_to_square(img, 0)
        _, padded_h, padded_w = img.shape

        # ---------
        #  Label
        # ---------

        label_path = self.label_files[index % len(self.img_files)].rstrip()
        label_path = r'../YOLOv3/data/coco/labels' + label_path
        #print (label_path)

        targets = None
        if os.path.exists(label_path):
            boxes = torch.from_numpy(np.loadtxt(label_path).reshape(-1, 5))
            # Extract coordinates for unpadded + unscaled image
            x1 = w_factor * (boxes[:, 1] - boxes[:, 3] / 2)
            y1 = h_factor * (boxes[:, 2] - boxes[:, 4] / 2)
            x2 = w_factor * (boxes[:, 1] + boxes[:, 3] / 2)
            y2 = h_factor * (boxes[:, 2] + boxes[:, 4] / 2)
            # Adjust for added padding
            x1 += pad[0]
            y1 += pad[2]
            x2 += pad[1]
            y2 += pad[3]
            # Returns (x, y, w, h)
            boxes[:, 1] = ((x1 + x2) / 2) / padded_w
            boxes[:, 2] = ((y1 + y2) / 2) / padded_h
            boxes[:, 3] *= w_factor / padded_w
            boxes[:, 4] *= h_factor / padded_h

            targets = torch.zeros((len(boxes), 6))
            targets[:, 1:] = boxes

        # Apply augmentations
        if self.augment:
            if np.random.random() < 0.5:
                img, targets = horisontal_flip(img, targets)

        return img_path, img, targets

    def collate_fn(self, batch):
        paths, imgs, targets = list(zip(*batch))
        # Remove empty placeholder targets
        targets = [boxes for boxes in targets if boxes is not None]
        # Add sample index to targets
        for i, boxes in enumerate(targets):
            boxes[:, 0] = i
        targets = torch.cat(targets, 0)
        # Selects new image size every tenth batch
        if self.multiscale and self.batch_count % 10 == 0:
            self.img_size = random.choice(range(self.min_size, self.max_size + 1, 32))
        # Resize images to input shape
        imgs = torch.stack([resize(img, self.img_size) for img in imgs])
        self.batch_count += 1
        return paths, imgs, targets

    def __len__(self):
        return len(self.img_files)

dataset在test部分只用到ImageFolder,pad_to_square(),list_dataset在train中使用。

  • pad_to_square()用于将长方形的图片用0 值padding成正方形

3. utils

utils.py

from __future__ import division
import math
import time
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches


def to_cpu(tensor):
    return tensor.detach().cpu()


def load_classes(path):
    """
    Loads class labels at 'path'
    """
    fp = open(path, "r")
    names = fp.read().split("\n")[:-1]
    return names


def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm2d") != -1:
        torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
        torch.nn.init.constant_(m.bias.data, 0.0)


def rescale_boxes(boxes, current_dim, original_shape):
    """ Rescales bounding boxes to the original shape """
    orig_h, orig_w = original_shape
    # The amount of padding that was added
    pad_x = max(orig_h - orig_w, 0) * (current_dim / max(original_shape))
    pad_y = max(orig_w - orig_h, 0) * (current_dim / max(original_shape))
    # Image height and width after padding is removed
    unpad_h = current_dim - pad_y
    unpad_w = current_dim - pad_x
    # Rescale bounding boxes to dimension of original image
    boxes[:, 0] = ((boxes[:, 0] - pad_x // 2) / unpad_w) * orig_w
    boxes[:, 1] = ((boxes[:, 1] - pad_y // 2) / unpad_h) * orig_h
    boxes[:, 2] = ((boxes[:, 2] - pad_x // 2) / unpad_w) * orig_w
    boxes[:, 3] = ((boxes[:, 3] - pad_y // 2) / unpad_h) * orig_h
    return boxes


def xywh2xyxy(x):# x,y是框的中心点不是左上角也不是右下角
    y = x.new(x.shape)
    y[..., 0] = x[..., 0] - x[..., 2] / 2
    y[..., 1] = x[..., 1] - x[..., 3] / 2
    y[..., 2] = x[..., 0] + x[..., 2] / 2
    y[..., 3] = x[..., 1] + x[..., 3] / 2
    return y


def ap_per_class(tp, conf, pred_cls, target_cls):
    """ Compute the average precision, given the recall and precision curves.
    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
    # Arguments
        tp:    True positives (list).
        conf:  Objectness value from 0-1 (list).
        pred_cls: Predicted object classes (list).
        target_cls: True object classes (list).
    # Returns
        The average precision as computed in py-faster-rcnn.
    """

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes = np.unique(target_cls)

    # Create Precision-Recall curve and compute AP for each class
    ap, p, r = [], [], []
    for c in tqdm.tqdm(unique_classes, desc="Computing AP"):
        i = pred_cls == c
        n_gt = (target_cls == c).sum()  # Number of ground truth objects
        n_p = i.sum()  # Number of predicted objects

        if n_p == 0 and n_gt == 0:
            continue
        elif n_p == 0 or n_gt == 0:
            ap.append(0)
            r.append(0)
            p.append(0)
        else:
            # Accumulate FPs and TPs
            fpc = (1 - tp[i]).cumsum()
            tpc = (tp[i]).cumsum()

            # Recall
            recall_curve = tpc / (n_gt + 1e-16)
            r.append(recall_curve[-1])

            # Precision
            precision_curve = tpc / (tpc + fpc)
            p.append(precision_curve[-1])

            # AP from recall-precision curve
            ap.append(compute_ap(recall_curve, precision_curve))

    # Compute F1 score (harmonic mean of precision and recall)
    p, r, ap = np.array(p), np.array(r), np.array(ap)
    f1 = 2 * p * r / (p + r + 1e-16)

    return p, r, ap, f1, unique_classes.astype("int32")


def compute_ap(recall, precision):
    """ Compute the average precision, given the recall and precision curves.
    Code originally from https://github.com/rbgirshick/py-faster-rcnn.

    # Arguments
        recall:    The recall curve (list).
        precision: The precision curve (list).
    # Returns
        The average precision as computed in py-faster-rcnn.
    """
    # correct AP calculation
    # first append sentinel values at the end
    mrec = np.concatenate(([0.0], recall, [1.0]))
    mpre = np.concatenate(([0.0], precision, [0.0]))

    # compute the precision envelope
    for i in range(mpre.size - 1, 0, -1):
        mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

    # to calculate area under PR curve, look for points
    # where X axis (recall) changes value
    i = np.where(mrec[1:] != mrec[:-1])[0]

    # and sum (\Delta recall) * prec
    ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap


def get_batch_statistics(outputs, targets, iou_threshold):
    """ Compute true positives, predicted scores and predicted labels per sample """
    batch_metrics = []
    for sample_i in range(len(outputs)):

        if outputs[sample_i] is None:
            continue

        output = outputs[sample_i]
        pred_boxes = output[:, :4]
        pred_scores = output[:, 4]
        pred_labels = output[:, -1]

        true_positives = np.zeros(pred_boxes.shape[0])

        annotations = targets[targets[:, 0] == sample_i][:, 1:]
        target_labels = annotations[:, 0] if len(annotations) else []
        if len(annotations):
            detected_boxes = []
            target_boxes = annotations[:, 1:]

            for pred_i, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)):

                # If targets are found break
                if len(detected_boxes) == len(annotations):
                    break

                # Ignore if label is not one of the target labels
                if pred_label not in target_labels:
                    continue

                iou, box_index = bbox_iou(pred_box.unsqueeze(0), target_boxes).max(0)
                if iou >= iou_threshold and box_index not in detected_boxes:
                    true_positives[pred_i] = 1
                    detected_boxes += [box_index]
        batch_metrics.append([true_positives, pred_scores, pred_labels])
    return batch_metrics


def bbox_wh_iou(wh1, wh2):
    wh2 = wh2.t()
    w1, h1 = wh1[0], wh1[1]
    w2, h2 = wh2[0], wh2[1]
    inter_area = torch.min(w1, w2) * torch.min(h1, h2)
    union_area = (w1 * h1 + 1e-16) + w2 * h2 - inter_area
    return inter_area / union_area


def bbox_iou(box1, box2, x1y1x2y2=True):
    """
    Returns the IoU of two bounding boxes
    """
    if not x1y1x2y2:
        # Transform from center and width to exact coordinates
        b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
        b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
        b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
        b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
    else:
        # Get the coordinates of bounding boxes
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]

    # get the corrdinates of the intersection rectangle
    inter_rect_x1 = torch.max(b1_x1, b2_x1)
    inter_rect_y1 = torch.max(b1_y1, b2_y1)
    inter_rect_x2 = torch.min(b1_x2, b2_x2)
    inter_rect_y2 = torch.min(b1_y2, b2_y2)
    # Intersection area
    inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * torch.clamp(
        inter_rect_y2 - inter_rect_y1 + 1, min=0
    )
    # Union Area
    b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
    b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)

    iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)

    return iou


def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
    """
    Removes detections with lower object confidence score than 'conf_thres' and performs
    Non-Maximum Suppression to further filter detections.
    Returns detections with shape:
        (x1, y1, x2, y2, object_conf, class_score, class_pred)
    """

    # From (center x, center y, width, height) to (x1, y1, x2, y2)
    prediction[..., :4] = xywh2xyxy(prediction[..., :4])
    output = [None for _ in range(len(prediction))]
    for image_i, image_pred in enumerate(prediction):
        # Filter out confidence scores below threshold
        image_pred = image_pred[image_pred[:, 4] >= conf_thres]
        # If none are remaining => process next image
        if not image_pred.size(0):
            continue
        # Object confidence times class confidence
        score = image_pred[:, 4] * image_pred[:, 5:].max(1)[0]
        # Sort by it
        image_pred = image_pred[(-score).argsort()]
        class_confs, class_preds = image_pred[:, 5:].max(1, keepdim=True)
        detections = torch.cat((image_pred[:, :5], class_confs.float(), class_preds.float()), 1)
        # Perform non-maximum suppression 极大值抑制
        keep_boxes = []
        while detections.size(0):
            large_overlap = bbox_iou(detections[0, :4].unsqueeze(0), detections[:, :4]) > nms_thres
            label_match = detections[0, -1] == detections[:, -1]
            # Indices of boxes with lower confidence scores, large IOUs and matching labels
            invalid = large_overlap & label_match
            weights = detections[invalid, 4:5]
            # Merge overlapping bboxes by order of confidence
            detections[0, :4] = (weights * detections[invalid, :4]).sum(0) / weights.sum()
            keep_boxes += [detections[0]]
            detections = detections[~invalid]
        if keep_boxes:
            output[image_i] = torch.stack(keep_boxes)

    return output


def build_targets(pred_boxes, pred_cls, target, anchors, ignore_thres):

    ByteTensor = torch.cuda.ByteTensor if pred_boxes.is_cuda else torch.ByteTensor
    FloatTensor = torch.cuda.FloatTensor if pred_boxes.is_cuda else torch.FloatTensor

    nB = pred_boxes.size(0) # batchsieze 4
    nA = pred_boxes.size(1) # 每个格子对应了多少个anchor
    nC = pred_cls.size(-1)  # 类别的数量
    nG = pred_boxes.size(2) # gridsize

    # Output tensors
    obj_mask = ByteTensor(nB, nA, nG, nG).fill_(0)  # obj,anchor包含物体, 即为1,默认为0 考虑前景
    noobj_mask = ByteTensor(nB, nA, nG, nG).fill_(1) # noobj, anchor不包含物体, 则为1,默认为1 考虑背景
    class_mask = FloatTensor(nB, nA, nG, nG).fill_(0) # 类别掩膜,类别预测正确即为1,默认全为0
    iou_scores = FloatTensor(nB, nA, nG, nG).fill_(0) # 预测框与真实框的iou得分
    tx = FloatTensor(nB, nA, nG, nG).fill_(0) # 真实框相对于网格的位置
    ty = FloatTensor(nB, nA, nG, nG).fill_(0)
    tw = FloatTensor(nB, nA, nG, nG).fill_(0) 
    th = FloatTensor(nB, nA, nG, nG).fill_(0)
    tcls = FloatTensor(nB, nA, nG, nG, nC).fill_(0)

    # Convert to position relative to box
    target_boxes = target[:, 2:6] * nG #target中的xywh都是0-1的,可以得到其在当前gridsize上的xywh
    gxy = target_boxes[:, :2]
    gwh = target_boxes[:, 2:]
    # Get anchors with best iou
    ious = torch.stack([bbox_wh_iou(anchor, gwh) for anchor in anchors]) #每一种规格的anchor跟每个标签上的框的IOU得分
    print (ious.shape)
    best_ious, best_n = ious.max(0) # 得到其最高分以及哪种规格框和当前目标最相似
    # Separate target values
    b, target_labels = target[:, :2].long().t() # 真实框所对应的batch,以及每个框所代表的实际类别
    gx, gy = gxy.t()
    gw, gh = gwh.t()
    gi, gj = gxy.long().t() #位置信息,向下取整了
    # Set masks
    obj_mask[b, best_n, gj, gi] = 1 # 实际包含物体的设置成1
    noobj_mask[b, best_n, gj, gi] = 0 # 相反

    # Set noobj mask to zero where iou exceeds ignore threshold
    for i, anchor_ious in enumerate(ious.t()): # IOU超过了指定的阈值就相当于有物体了
        noobj_mask[b[i], anchor_ious > ignore_thres, gj[i], gi[i]] = 0

    # Coordinates
    tx[b, best_n, gj, gi] = gx - gx.floor() # 根据真实框所在位置,得到其相当于网络的位置
    ty[b, best_n, gj, gi] = gy - gy.floor()
    # Width and height
    tw[b, best_n, gj, gi] = torch.log(gw / anchors[best_n][:, 0] + 1e-16)
    th[b, best_n, gj, gi] = torch.log(gh / anchors[best_n][:, 1] + 1e-16)
    # One-hot encoding of label
    tcls[b, best_n, gj, gi, target_labels] = 1 #将真实框的标签转换为one-hot编码形式
    # Compute label correctness and iou at best anchor 计算预测的和真实一样的索引
    class_mask[b, best_n, gj, gi] = (pred_cls[b, best_n, gj, gi].argmax(-1) == target_labels).float()
    iou_scores[b, best_n, gj, gi] = bbox_iou(pred_boxes[b, best_n, gj, gi], target_boxes, x1y1x2y2=False) #与真实框想匹配的预测框之间的iou值

    tconf = obj_mask.float() # 真实框的置信度,也就是1
    return iou_scores, class_mask, obj_mask, noobj_mask, tx, ty, tw, th, tcls, tconf

4. test/detect

detect.py

from __future__ import division

from models import *
from utils.utils import *
from utils.datasets import *

import os
import sys
import time
import datetime
import argparse

from PIL import Image

import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable

import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.ticker import NullLocator

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--image_folder", type=str, default=r"..\data\samples", help="path to dataset")
    parser.add_argument("--model_def", type=str, default=r"..\config\yolov3.cfg",
                        help="path to model definition file")# 网络结构定义
    parser.add_argument("--weights_path", type=str, default=r"..\weights\yolov3.weights",
                        help="path to weights file") # 网络权重加载
    parser.add_argument("--class_path", type=str, default=r"..\data\coco.names",
                        help="path to class label file") # classes name
    parser.add_argument("--conf_thres", type=float, default=0.8, help="object confidence threshold") # 置信度阈值
    parser.add_argument("--nms_thres", type=float, default=0.4, help="iou threshold for non-maximum suppression")
    parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
    parser.add_argument("--n_cpu", type=int, default=0, help="number of cpu threads to use during batch generation")
    parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension")
    parser.add_argument("--checkpoint_model", type=str, help="path to checkpoint model")
    opt = parser.parse_args()
    print(opt)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    os.makedirs("output", exist_ok=True)

    # Set up model
    model = Darknet(opt.model_def, img_size=opt.img_size).to(device)

    if opt.weights_path.endswith(".weights"):
        # Load darknet weights
        model.load_darknet_weights(opt.weights_path)
    else:
        # Load checkpoint weights
        model.load_state_dict(torch.load(opt.weights_path))

    model.eval()  # Set in evaluation mode

    dataloader = DataLoader(
        ImageFolder(opt.image_folder, img_size=opt.img_size),
        batch_size=opt.batch_size,
        shuffle=False,
        num_workers=opt.n_cpu,
    )

    classes = load_classes(opt.class_path)  # Extracts class labels from file

    Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor

    imgs = []  # Stores image paths
    img_detections = []  # Stores detections for each image index

    print("\nPerforming object detection:")
    prev_time = time.time()
    for batch_i, (img_paths, input_imgs) in enumerate(dataloader):
        # Configure input
        input_imgs = Variable(input_imgs.type(Tensor))

        # Get detections
        with torch.no_grad():
            detections = model(input_imgs)
            detections = non_max_suppression(detections, opt.conf_thres, opt.nms_thres)

        # Log progress
        current_time = time.time()
        inference_time = datetime.timedelta(seconds=current_time - prev_time)
        prev_time = current_time
        print("\t+ Batch %d, Inference Time: %s" % (batch_i, inference_time))

        # Save image and detections
        imgs.extend(img_paths)
        img_detections.extend(detections)

    # Bounding-box colors
    cmap = plt.get_cmap("tab20b")
    colors = [cmap(i) for i in np.linspace(0, 1, 20)]

    print("\nSaving images:")
    # Iterate through images and save plot of detections
    for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):

        print("(%d) Image: '%s'" % (img_i, path))

        # Create plot
        img = np.array(Image.open(path))
        plt.figure()
        fig, ax = plt.subplots(1)
        ax.imshow(img)

        # Draw bounding boxes and labels of detections
        if detections is not None:
            # Rescale boxes to original image
            detections = rescale_boxes(detections, opt.img_size, img.shape[:2])
            unique_labels = detections[:, -1].cpu().unique()
            n_cls_preds = len(unique_labels)
            bbox_colors = random.sample(colors, n_cls_preds)
            for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                print("\t+ Label: %s, Conf: %.5f" % (classes[int(cls_pred)], cls_conf.item()))

                box_w = x2 - x1
                box_h = y2 - y1

                color = bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])]
                # Create a Rectangle patch
                bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=2, edgecolor=color, facecolor="none")
                # Add the bbox to the plot
                ax.add_patch(bbox)
                # Add label
                plt.text(
                    x1,
                    y1,
                    s=classes[int(cls_pred)],
                    color="white",
                    verticalalignment="top",
                    bbox={"color": color, "pad": 0},
                )

        # Save generated image with detections
        plt.axis("off")
        plt.gca().xaxis.set_major_locator(NullLocator())
        plt.gca().yaxis.set_major_locator(NullLocator())
        filename = path.split("\\")[-1].split(".")[0]
        plt.savefig(rf"..\output\samples\{filename}.png", bbox_inches="tight", pad_inches=0.0)
        plt.close()

5. detect全过程

  • 加载图片,将图片padding成正方形后作为模型的input
  • 由浅及深将三个yolo层得到的特征cat到一起【(1,507,85)+(1,2028,85)+ (1,8112,85)】 = 【(1,10647,85)】
  • model预测得到的10647个框进入非极大值抑制去除小于阈值的框
  • 把最终的框框保存,现在的框坐标是相对于正方形的,要将其还原成原本的图片尺寸下的坐标进行可视化
    我的测试结果:
    在这里插入图片描述

今天先这些,去学新的啦,886

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/657433.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

代码托管/版本控制工具:Git的安装和使用

目录 一、Git的下载和安装二、Git基本配置三、代码上传到远程仓库四、代码下载到本地 一、Git的下载和安装 1.登录GitHub官网https://github.com/注册账户密码 2.登录https://git-scm.com/download/win &#xff08;根据自己电脑的位数和系统下载git&#xff09; 3.双击Gi…

02-IDEA 集成Maven

一. 下载IDEA编辑器 下载地址&#xff1a;Download IntelliJ IDEA – The Leading Java and Kotlin IDE 选中免费开源的社区版本 创建桌面图标和添加安装路径到系统变量&#xff0c;其他的默认安装即可。 二. 配置Maven环境 分为局部配置和全局配置 1. 局部配置maven环境 …

004依赖

传递 一个坐标引入多个jar 传递 子工程 引入了父pom 也是一种传递 继承 继承是为了消除重复&#xff0c;如果将 dao、service、web 分开创建独立的工程则每个工程的 pom.xml 文件中的内容存在重复&#xff0c;比如&#xff1a;设置编译版本、锁定 spring 的版本的等&#xff…

和鲸社区数据分析每周挑战【第九十三期:特斯拉充电桩分布分析】

和鲸社区数据分析每周挑战【第九十三期&#xff1a;特斯拉充电桩分布分析】 文章目录 和鲸社区数据分析每周挑战【第九十三期&#xff1a;特斯拉充电桩分布分析】一、前言二、数据读取和初步探索三、数据探索及可视化1、获取拥有最多充电站的 10 个国家2、一年中各月新开业数量…

I.MX RT1170之FlexSPI详解:FlexSPI基础知识和特性

最近我也在做RT1170的相关项目&#xff0c;由于项目需要&#xff0c;研究了Flash下载算法、NOR Flash空间的擦除/烧写(OTFAD XIP更新固件时要更新OTFAD Key Blob字段)、HyperRAM初始化等功能&#xff0c;这些都是开发过程中可能会遇到的一些问题&#xff0c;而这些都与FlexSPI接…

第2章 信息技术发展

文章目录 2.1.2计算机网络1.网络标准协议2.软件定义网络3.第五代移动通信技术 2.1.3存储和数据库1.存储技术2.数据结构模型3.常用数据库类型4.数据仓库 2.1.4信息安全2.1.5信息技术的发展2.2.1物联网2.2.2云计算2.2.3大数据2.2.4区块链2.2.5人工智能2.2.6虚拟现实 信息技术是在…

前端vue入门(纯代码)09

【09.vue中组件的自定义事件】 自定义组件链接 在vue中用的click【点击】、keyup【按键】……等事件&#xff0c;这些属于内置事件&#xff0c;也就是js自带的事件。 问题一&#xff1a;什么是组件自定义事件呢&#xff1f; 【内置事件】:是给html元素用的&#xff0c;比如s…

UG\NX二次开发 加密锁(加密狗)

文章作者:里海 来源网站:https://blog.csdn.net/WangPaiFeiXingYuan 加密锁简介 加密狗是一种用于保护软件版权的技术手段,它可以限制未经授权的用户在未经许可的情况下使用某些软件。软件加密锁可以保护软件开发商的知识产权,防止盗版和非法复制等行为,同时也可以…

React 对比class与Effect Hook优化响应式数据更新监听,感受useEffect真正的强大

还是之前写过的一个组件 import React from "react"export default class index extends React.Component{constructor(props){super(props);this.state {name: "小猫猫"}}componentDidMount ()>{document.title this.state.name;}componentDidUpda…

msvcr110.dll,丢失修复,msvcr110.dll,丢失修复详细解决办法

我们在运行软件程序或者游戏的时候&#xff0c;如果程序提示“无法启动此程序&#xff0c;因为计算机中丢失msvcr110.dll。尝试重新安装该程序以解决此问题”&#xff0c;如果说明您电脑系统中缺少或者未注册msvcr110.dll这个运行库文件&#xff0c;那么我们要如何解决这个问题…

Node内存管理+垃圾回收机制

最近看到《深入浅出node》这本书&#xff0c;里面正好有内存控制&#xff0c; 加上最近看到一篇文章&#xff0c;也是讲了内存管理和垃圾回收机制。 由于自己曾经做过一个ssl接口&#xff0c;导致node服务经常重启&#xff0c;我潜意识就怀疑是内存管理出现了问题&#xff0c;…

H264 NALU分析

标题 1.H264介绍2.H264编解码解析2.1. H264编码原理2.2 H264的I帧,P帧,B帧2.3 H264编码结构解析2.4 NALU2.4.1 NALU结构2.4.2 解析NALU2.4.3 annexb模式 1.H264介绍 H.264从1999年开始&#xff0c;到2003年形成草案&#xff0c;最后在2007年定稿有待核实。在ITU的标准⾥称为H.…

Ansible Playbook

Ansible 的脚本 --- playbook 剧本 playbooks 本身由以下各部分组成 &#xff08;1&#xff09;Tasks&#xff1a;任务&#xff0c;即通过 task 调用 ansible 的模板将多个操作组织在一个 playbook 中运行 &#xff08;2&#xff09;Variables&#xff1a;变量 &#xff08;3&…

Postman接口测试之:添加Cookie伪造请求

1&#xff0c;获取cookie值 登录某网站&#xff0c;通过开发者工具&#xff08;或者fiddler抓包工具&#xff09;&#xff0c;获取登录成功后的请求头中的cookie值。 大家肯定奇怪&#xff0c;明明访问首页的时候就已经生成了cookie值&#xff0c;为什么还登录呢&#xff1f;…

Linux中磁盘管理之格式化、分区、挂载-详解

今天给大家介绍一下Linux中磁盘管理中格式化、分区、挂载等操作步骤&#xff0c;希望这篇文章对大家有所帮助。 一、磁盘知识 1.磁盘含义 磁盘&#xff08;Disk&#xff09;是一种用于存储和读取数据的物理设备&#xff0c;它由一个或多个旋转的磁性盘片组成。这些盘片通常由…

递归算法学习

递归算法介绍 递归指的是函数或算法在执行过程中调用自身。在递归的过程中&#xff0c;程序会不断地将自身的执行过程压入调用栈中&#xff0c;直到满足某个条件结束递归调用并开始返回。递归算法常用于解决一些具有递归结构的问题&#xff0c;比如树、图、排序等。递归算法可以…

5.controller部署nova服务

nova 服务是 OpenStack service 计算服务&#xff0c;负责维护和管理云环境的计算资源&#xff1b; 例如&#xff1a; 接收客户端请求需要的计算资源&#xff1b; 确定实例在哪个物理机上创建&#xff1b; 通过虚机化的方式将实例启动运行等工作。 controller节点 在安装和配…

JAVA为什么要面向对象

JAVA是一个面向对象的语言 ok&#xff0c;我们开始&#xff0c;用了那么久的java&#xff0c;看了那么多代码&#xff0c;你是否懂得了面向对象&#xff0c;今天我们的第一个问题就是&#xff0c;为什么java要面向对象&#xff0c;要解释为啥要面向对象&#xff0c;我们首先要…

Python selenium自动化测试模型图解

1、线性测试 优势&#xff1a;每一个脚本都是完整独立的&#xff0c;每一个脚本对应一个测试用例 缺点&#xff1a;开发成本高&#xff0c;会有重复操作重复脚本&#xff1b;维护成本也高&#xff0c;修改重复操作的脚本时&#xff0c;要逐一进行修改。 2、模块化驱动测试 …

2023年计算机专业毕业实习报告最新

2023年计算机专业毕业实习报告最新篇1 一、实习基本情况 按照学校对毕业生的要求&#xff0c;为毕业后的工作和谋职打下良好的基础。我于X年X月来到山西柳林汇丰兴业同德焦煤有限公司进行为期X个月的实习。毕业实习让我们想起那句老话&#xff1a;“让学生赢在起跑线上。”在学…