文章目录
- Micro diversity
- Time Diversity
- Frequency Diversity
- Spatial Diversity
- Combination of signals
- Selection Combining
- Maximal Ratio Combining
- Equal Gain Combining
- References
分集技术是用来补偿衰落信道损耗的,它通常通过两个或更多的接收天线来实现。同均衡器一样,它在不增加传输功率和带宽的前提下,而改善无线通信信道的传输质量。在移动通信中,基站和移动台的接收机都可以采用分集技术。
分集是指分散传输和集中接收。所谓分散传输是使接收端能获得多个统计独立的、携带同一信息的衰落信号。集中接收是接收机把收到的多个统计独立的衰落信号进行合并(选择与组合)以降低衰落的影响。百度百科
分集技术包括
- 分集发送技术:如何获得不同衰减信道道上的多份统计独立信号
- 分集合并技术:如何合并多个接收信号以获得最佳检测性能
分集方式可分为
- 宏分集(Macro diversity):减少大尺度衰落(large‐scale fading),即慢衰落(大尺度衰落都是慢衰落,但慢衰落不一定是大尺度衰落)。多个基站设置在不同的地理位置和不同的方向上,同时和小区内的一个移动台进行通信。只要在各个方向上的信号传播不是同时受到阴影效应或地形的影响而出现严重的慢衰落,这种办法就可以保证通信不会中断。
- 微分集(Micro diversity):减少快衰落。
Micro diversity
微分集技术包括:
- 时间分集
- 空间分集
- 频率分集
- 极化分集
- 角度分集
Time Diversity
信号在独立的时间区间多次重发,重发的时间间隔要满足
Δ
T
≫
1
2
f
m
=
1
2
(
v
/
λ
)
\Delta T \gg \frac{1}{2f_m}=\frac{1}{2(v/\lambda)}
ΔT≫2fm1=2(v/λ)1
时间分集的一个现代实现方式是使用 RAKE 接收器进行扩频 CDMA,其中多径信道提供了传输信息的冗余度。除了 RAKE,交织(interleaving)用于在数字通信系统中来实现时间分集而不增加任何开销。
由于语音编码器试图以统一和有效的数字格式表示广泛的声音,因此编码的数据位(source bits)携带了大量的信息,一些 source bits 比其他的更重要,必须防止发生错误。对于许多语音编码器来说,典型的情况是连续产生几个 "重要 "比特,交织器的功能是在时间上分散这些比特,这样如果出现深衰落或噪声突发,源数据块的重要比特就不会同时被破坏。通过在时间上分散 source bits,就有可能利用差错控制编码来保护源数据免受信道的破坏。由于差错控制编码的设计是为了防止可能随机(random)或突发(bursty)的信道错误,交织器在信道编码之前对 source bits 的时间顺序进行打乱,使得成串差错变为单个的随机或突发差错,可以被差错控制编码检测出来。下图是一个交织的示例:
如果我们按原来的 AAAA
,BBBB
以及 CCCC
传输,那么如果信道恰好在传输 CCCC
这一连串比特时出错,我们在收端恢复不出正确的码字。但如果使用交织,则可以抵抗这样的错误,下面这个图可能更为直观:
在接收方,去交织器(de-interleaver)通过依次增加每个连续位的行数来存储接收到的数据,然后逐行时钟输出数据,每次一个字(行),如下图所示:
Frequency Diversity
频率分集是通过在多个载波频率上传输信息来实现的。 这种技术背后的原理是,相隔超过信道相关带宽的两个信号的衰减是不相关的。理论上,如果信道是不相关的,那么同时衰减的概率将是单独衰减概率的乘积。相关带宽的公式为
B
c
=
1
2
π
Δ
B_c=\frac{1}{2\pi \Delta}
Bc=2πΔ1
其中 Δ \Delta Δ 为时延扩展(最大传输时延和最小传输时延的差值)。
Spatial Diversity
在任意两个不同的位置上接收同一信号,只要两个位置的距离大到一定程度,则两处所收到的信号衰落是不相关的。也就是说,我们最少需要两个相距为 d d d 的天线:
- d d d 要足够大,以保证独立性;
- d d d 和波长、地面物体以及天线高度都有关
在市区, d d d 通常取 0.5 λ 0.5\lambda 0.5λ,而在郊区, d d d 通常取 0.8 λ 0.8\lambda 0.8λ.
Combination of signals
我们介绍 3 种合并技术:
- 选择式合并(Selection Combining,SC)
- 最大比值合并(Maximal Ratio Combining,MRC)
- 等增益合并(Equal Gain Combining,EGC)
Selection Combining
选择式合并是最简单的合并技术。这种方法的框图类似于下图所示:
其中 m 个解调器用于提供 m 个分集分支,其增益被调整到为每个分支提供相同的平均 SNR。具有最高瞬时信噪比的分支被连接到解调器上。在实践中,使用具有最大 ( S + N ) / N (S+N)/N (S+N)/N 的分支,因为很难单独测量出信噪比。
我们考虑在一个接收器上有 M 个独立的 Rayleigh fading channels。每个信道被称为一个 diversity 分支。此外,假设每个分支具有相同的平均信噪比,为
S
N
R
=
Γ
=
E
b
N
0
α
2
‾
SNR=\Gamma=\frac{E_b}{N_0}\overline{\alpha^2}
SNR=Γ=N0Ebα2
我们假设
α
2
‾
=
1
\overline{\alpha^2}=1
α2=1。如果每个分支的瞬时 SNR 为
γ
i
\gamma_i
γi,那么
γ
i
\gamma_i
γi 的 p.d.f 为
p
(
γ
i
)
=
1
Γ
e
−
γ
i
/
Γ
p(\gamma_i)=\frac{1}{\Gamma}e^{-\gamma_i/\Gamma}
p(γi)=Γ1e−γi/Γ
某个分支的瞬时 SNR 小于阈值
γ
\gamma
γ 的概率为
P
r
[
γ
i
≤
γ
]
=
∫
0
γ
p
(
γ
i
)
d
γ
i
=
1
−
e
−
γ
/
Γ
Pr[\gamma_i\le\gamma] = \int_0^\gamma p(\gamma_i)d\gamma_i=1-e^{-\gamma/\Gamma}
Pr[γi≤γ]=∫0γp(γi)dγi=1−e−γ/Γ
所有 M 个独立的分支收到同时小于某个特定 SNR 阈值
γ
\gamma
γ 的信号的概率是:
P
r
[
γ
1
,
…
,
γ
M
≤
γ
]
=
(
1
−
e
−
γ
/
Γ
)
M
=
P
M
(
γ
)
Pr[\gamma_1,\dots,\gamma_M \le \gamma]=\left(1-e^{-\gamma/\Gamma}\right)^M=P_M(\gamma)
Pr[γ1,…,γM≤γ]=(1−e−γ/Γ)M=PM(γ)
因此一个或者多个分支瞬时 SNR 大于阈值的概率即为
P
r
[
γ
i
>
γ
]
=
1
−
(
1
−
e
−
γ
/
Γ
)
M
Pr[\gamma_i>\gamma]=1-\left(1-e^{-\gamma/\Gamma}\right)^M
Pr[γi>γ]=1−(1−e−γ/Γ)M
假设我们使用四个分支,每个分支接收独立的 Rayleigh fading 信号。如果平均信噪比为 20 dB(100),那么信噪比下降到 10 dB(10)以下的概率即为
(
1
−
e
−
γ
/
Γ
)
M
=
(
1
−
e
0.1
)
4
=
0.000082
\left(1-e^{-\gamma/\Gamma}\right)^M=\left(1-e^{0.1}\right)^4=0.000082
(1−e−γ/Γ)M=(1−e0.1)4=0.000082
而如果不使用分集,即 M=1,那么那么信噪比下降到 10 dB 以下的概率为
(
1
−
e
−
γ
/
Γ
)
M
=
(
1
−
e
0.1
)
1
=
0.095
\left(1-e^{-\gamma/\Gamma}\right)^M=\left(1-e^{0.1}\right)^1=0.095
(1−e−γ/Γ)M=(1−e0.1)1=0.095
我们这里直接给出 SC 的合并增益为
G
S
C
=
γ
ˉ
Γ
=
∑
k
=
1
M
1
k
G_{SC}=\frac{\bar{\gamma}}{\Gamma}=\sum_{k=1}^M\frac{1}{k}
GSC=Γγˉ=k=1∑Mk1
选择式合并很容易实现,因为只需要一个 side monitoring station 和一个接收器的天线 switch。然而,它并不是最佳的合并技术,因为它没有同时使用所有可能的分支。MRC 以共相位和加权的方式利用到了所有分支,从而使接收器在任何时候都有最高的可实现的信噪比。
Maximal Ratio Combining
来自所有 M 个分支的信号根据它们各自的信号电压与噪声功率比进行加权,然后进行求和。 下图是 MRC 的框图:
在这里,各个信号在相加之前必须进行相位调整(co-phasing)(与选择合并不同),这通常需要为每个天线元件配备单独的接收器和相位电路。最大比值合并产生的输出信噪比等于单个分支的信噪比之和。因此,它的优点是产生一个具有可接受的信噪比的输出,即使每个分支的信噪比都很糟糕。
在 MRC 中,来自每个分支的电压信号
r
i
r_i
ri 经过相位调整,按照适当的增益系数,同相相加。如果每个分支的增益为
G
i
G_i
Gi,那么送入检测器之前的信号为
r
M
=
∑
i
=
1
M
G
i
r
i
r_M=\sum_{i=1}^MG_ir_i
rM=i=1∑MGiri
假设每个分支有相同的噪声功率
N
N
N,因此总的噪声功率也为每个分支对应的加权和:
N
T
=
N
∑
i
=
1
M
G
i
2
N_T=N\sum_{i=1}^MG_i^2
NT=Ni=1∑MGi2
所以 SNR 为
γ
M
=
r
M
2
2
N
T
\gamma_M=\frac{r_M^2}{2N_T}
γM=2NTrM2
借助切比雪夫不等式,
γ
M
\gamma_M
γM 在
G
i
=
r
i
/
N
G_i=r_i/N
Gi=ri/N 时取得最大值,此时
γ
M
=
∑
i
=
1
M
γ
i
\gamma_M=\sum_{i=1}^M\gamma_i
γM=i=1∑Mγi
即,经过检测器前的信号的 SNR 为每个分支 SNR 的和。
我们这里直接给出 MRC 的 SNR 小于某个特定 SNR 阈值
γ
\gamma
γ 的概率是
1
−
e
−
γ
/
Γ
∑
k
=
1
M
(
γ
/
Γ
)
k
−
1
(
k
−
1
)
!
1-e^{-\gamma/\Gamma}\sum_{k=1}^M\frac{(\gamma/\Gamma)^{k-1}}{(k-1)!}
1−e−γ/Γk=1∑M(k−1)!(γ/Γ)k−1
因为
γ
M
=
∑
i
=
1
M
γ
i
\gamma_M=\sum_{i=1}^M\gamma_i
γM=∑i=1Mγi,所以平均 SNR 也为每个分支平均 SNR 的和,即
γ
M
‾
=
∑
i
=
1
M
γ
i
‾
=
M
Γ
\overline{\gamma_M}=\sum_{i=1}^M\overline{\gamma_i}=M\Gamma
γM=i=1∑Mγi=MΓ
所以 MRC 的合并增益为
G
M
R
C
=
γ
M
‾
Γ
=
M
G_{MRC}=\frac{\overline{\gamma_M}}{\Gamma}=M
GMRC=ΓγM=M
Equal Gain Combining
在某些情况下,为最大比值合并提供所需的可变加权能力并不方便。在这种情况下,支路权重都被统一设置,但每个支路的信号都是共相位的,以提供等增益合并。这使接收器能够利用每个分支上同时收到的信号。
我们直接给出 EGC 的合并增益:
G
E
G
C
=
1
+
(
M
−
1
)
π
/
4
G_{EGC}=1+(M-1)\pi/4
GEGC=1+(M−1)π/4
可以看出,当 M 增大时,EGC 与 MRC 相差不多,实验证明仅会差 1 dB 左右。
References
Wireless Communications: Principles and Practices, 2nd Edition, Theodore S. Rappaport.