傅里叶级数简介

news2024/11/19 1:24:36

先看动图

将函数f(x) 用 sin(nx) + cos(nx) 的形式表示出来的方式就是傅里叶级数

这里有几个使用条件

  • 收敛性:符合迪力克雷收敛条件。简单理解为 f(x) 必须是一个丝滑的曲线。
  • 周期性: f(x) 必须是一个周期函数

还有一个基础条件,三角函数具有正交性:任取两个不同三角函数元素,它们的乘积在[−π,π]上的定积分等于零。举例说明一共有如下四种情况(公式2、3、4种所列情况m不等于n):

 这时,我们就可以吧符合条件的f(x) 写成傅里叶级数的样子: 

求解a0

我们对表达式两边在[−π,π]上求积分,得到 

由公式1可知,上式中等号右侧除第一项外其余全为0。因此

求解an

等式两端乘以 cos(kx)

由公式1、2、4,对于n不等于k的展开项,其积分值为0,因此等号右边只剩下n=k这一项:

 

 求解bn

由求解an的方式可知,在等式两边同乘sin(kx)可求得

 此时,傅里叶级数的所有参数均可求得,对于需要展开的f(x),可以写成

即,我们将直角坐标系上的周期函数曲线 f(x) 转移到了以sin cos 为底的坐标系中,也可以说将时域上的周期函数用频域的非周期函数表示出来

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/633785.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

element-plus布局排版问题总结(更新ing)

文章目录 el-container空隙修改app组件 el-container空隙 源码-更改了容器的显示&#xff0c;占满屏幕 <template><div class"common-layout"><el-container><el-header><el-row class"el-row1"><el-col :span"12&…

oppo r11 升级8.1系统 图文教程

Time: 2023年6月11日13:39:25 By:MemroyErHero 1 预留一定的空间,存放刷机包. 2 导入刷机包 r11.ozip 到手机上 3 手机文件管理器 打开 r11.ozip 文件 4 点击立即更新即可 5 重要的事情说三遍,刷机过程中 不能关机 不能断电 否则会变成砖头 重要的事情说三遍,刷机过程中 …

cmake 基本使用

目录 CMake都有什么? 使用cmake一般流程为&#xff1a; 1 生成构建系统 使用命令在build外编译代码: cmake基本语法 指定使用最低版本的cmake 指定项目名称 指定生成目标文件的名称 指定C版本 cmake配置文件使用 cmake配置文件生成头文件 版本号定义方法一: 版本号定…

软件测试正在面试银行的可以看下这些面试题

前言 最近呢有很多的小伙伴问我有没有什么软件测试的面试题&#xff0c;由于笔者之前一直在忙工作上的事情&#xff0c;没有时间整理面试题&#xff0c;刚好最近休息了一下&#xff0c;顺便整理了一些面试题&#xff0c;现在就把整理的面试题分享给大家&#xff0c;废话就不多说…

C 语言实现简单工厂模式

文章目录 1. 背景介绍2. 设计实现3. 运行测试4. 总结 1. 背景介绍 印象中&#xff0c;设计模式是由面向对象的语言(C、JAVA)才能完成的&#xff0c;而 C 语言是面向过程的语言&#xff0c;不能实现设计模式。但C 语言中有 函数指针、回调函数 等机制&#xff0c;使用这些机制便…

Java中线程的生命周期

Java中线程的生命周期 Java中线程的声明周期与os中线程的生命周期不太一样&#xff0c;java中线程有6个状态&#xff0c;见下&#xff1a; NEW: 初始状态&#xff0c;线程被创建出来但没有被调用 start() 。RUNNABLE: 运行状态&#xff0c;线程被调用了 start()等待运行的状态…

Elasticsearch:使用 Redis 让 Elasticsearch 更快

Elasticsearch 是一个强大的搜索引擎&#xff0c;可让你快速轻松地搜索大量数据。但是&#xff0c;随着数据量的增长&#xff0c;响应时间可能会变慢&#xff0c;尤其是对于复杂的查询。在本文中&#xff0c;我们将探讨如何使用 Redis 来加快 Elasticsearch 搜索响应时间。 Re…

【数据结构】常见排序算法——常见排序介绍、归并排序、各大排序复杂度和稳定性

文章目录 1.常见排序2.归并排序2.1归并排序基本思想2.2归并排序的实现2.3归并排序特性总结 3.各大排序复杂度和稳定性 1.常见排序 2.归并排序 归并排序&#xff08;MERGE-SORT&#xff09;是建立在归并操作上的一种有效的排序算法,该算法是采用分治法&#xff08;Divide andCon…

商业图表工具推荐,热门商业图表工具有哪些?

在如今的商业环境下&#xff0c;数据分析和可视化是非常重要的一环。不仅可以帮助企业更好地了解自身情况&#xff0c;还能为决策提供有力支持。因此&#xff0c;选择一个好用的商业图表工具对于报表开发人员来说是非常重要的。下面将为大家介绍7款热门商业图表工具&#xff0c…

Mac电脑删除第三方软件工具CleanMyMac X

经常使用Mac的人都知道&#xff0c;Mac除了可以在AppStore下载应用程序&#xff0c;还有许多软件是需要在网页上搜索下载的第三方软件。那么这类第三方软件软件除了下载方式不同之外还有什么是和从App store下载的软件有区别的吗&#xff1f;答案是肯定的&#xff0c;那就是这些…

Docker容器进入的4种方式

Docker容器进入的4种方式 Docker容器进入的4种方式 在使用Docker创建了容器之后&#xff0c;大家比较关心的就是如何进入该容器了&#xff0c;其实进入Docker容器有好几多种方式&#xff0c;这里我们就讲一下常用的几种进入Docker容器的方法。 进入Docker容器比较常见的几种…

带你了解自动化测试只需要一分钟

目前自动化测试并不属于新鲜的事物&#xff0c;或者说自动化测试的各种方法论已经层出不穷&#xff0c;但是&#xff0c;能够明白自动化测试并很好落地实施的团队还不是非常多&#xff0c;我们接来下用通俗的方式来介绍自动化测试…… 首先我们从招聘岗位需求说起。看近期的职业…

软件测试什么样的技术才能拿20K薪资?

年少不懂面试经&#xff0c;读懂已是测试人。 大家好&#xff0c;我叫木江&#xff0c;一名历经沧桑&#xff0c;看透互联网行业百态的测试从业者&#xff0c;经过数年的勤学苦练&#xff0c;精钻深研究&#xff0c;终于从初出茅庐的职场新手成长为现在的测试老鸟&#xff0c;早…

MySQL数据库基础 09

第九章 子查询 1. 需求分析与问题解决1.1 实际问题1.2 子查询的基本使用1.3 子查询的分类 2. 单行子查询2.1 单行比较操作符2.2 代码示例2.3 HAVING 中的子查询2.4 CASE中的子查询2.5 子查询中的空值问题2.5 非法使用子查询 3. 多行子查询3.1 多行比较操作符3.2 代码示例3.3 空…

深入浅出对话系统——自然语言理解模块

自然语言理解 首先回顾一下自然语言理解的概念。 自然语言理解(Natural Language Understanding)包含三个子模块&#xff1a; 其中领域识别和意图识别都是分类问题&#xff0c;而语义槽填充属于序列标注问题。所以&#xff0c;在自然语言理解中&#xff0c;我们要解决两个分类…

阿里云(Linux)安装Docker教程

首先安装docker&#xff0c;需要找到帮助文档&#xff0c;那肯定是我们的官网&#xff1a; Install Docker Engine on CentOS | Docker Documentation 找到对应的位置&#xff0c;这里是安装在CentOS中&#xff0c;版本需要Ce…

2021~2022 学年第二学期《信息安全》考试试题(A 卷)

北京信息科技大学 2021~2022 学年第二学期《信息安全》考试试题&#xff08;A 卷&#xff09; 课程所在学院&#xff1a;计算机学院 适用专业班级&#xff1a;计科1901-06&#xff0c;重修 考试形式&#xff1a;(闭卷) 一、选择题&#xff08;本题满分10分,共含10道小题,每小题…

Jenkins结合gitee自动化部署SpringBoot项目

安装 安装教程 插件选择 Gitee Plugin 配置 源码管理 填写源码地址 注意&#xff1a;请确保genkins所在的服务器有权限git拉取远程仓库代码&#xff0c;如果不可以请参考ssh配置centos 配置ssh拉取远程git代码 源码管理 构建触发器 1.勾选Gitee webhook 触发构建 2.生成we…

Python3实现基于ARIMA模型来预测茅台股票价格趋势

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

实验篇(7.2) 10. 扩充物理实验环境 ❀ 远程访问

【简介】本着先简后难原则&#xff0c;我们前面所做的实验&#xff0c;均为客户端远程访问防火墙&#xff0c;现在我们需要实现防火墙和防火墙之间的访问。在现有的实验环境中&#xff0c;加再入一台防火墙。让我们看看需要怎样操作。 网络拓扑 企业之间最常见的远程互相访问&a…