基于深度学习的高精度动物检测识别系统(PyTorch+Pyside6+YOLOv5模型)

news2025/1/11 6:05:44

摘要:基于深度学习的高精度动物检测识别系统可用于日常生活中或野外来检测与定位动物目标(狼、鹿、猪、兔和浣熊),利用深度学习算法可实现图片、视频、摄像头等方式的动物(狼、鹿、猪、兔和浣熊)目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括动物训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本动物检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度动物识别检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载YOLOv5源码库,放到自己电脑的目录,之后打开cmd进入到YOLOv5目录里面,本文演示的目录是:D:\vscode_workspace\yolov5
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。
在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的动物数据集(狼、鹿、猪、兔和浣熊)手动标注了狼、鹿、猪、兔和浣熊这五个类别,数据集总计5423张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的动物检测识别数据集包含训练集4800张图片,验证集370张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。

在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的动物数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对动物数据集(狼、鹿、猪、兔和浣熊)进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、苹果检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。
整个项目文件如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/621204.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前端基础面试题(HTML,CSS,JS)

大厂面试题分享 面试题库 前后端面试题库 (面试必备) 推荐:★★★★★ 地址:前端面试题库 web前端面试题库 VS java后端面试题库大全 html语义化的理解 代码结构: 使页面在没有css的情况下,也能够呈现出好的内容结构 有利于SE…

AI实战营:MMPreTrain代码实现

环境 环境安装 pip install openmim mim install mmengine mim install mmcv mim install mmpretrain # 安装多模态模型 pip install "mmpretrain[multimodal]" 验证环境 In [1]: import mmengineIn [2]: mmengine.__version__ Out[2]: 0.7.3In [3]: import …

开发者出海合规手册;@levelsio独立开发月入20万解析;MJ+AR设计珠宝;SD算法原理-通俗版 | ShowMeAI日报

👀日报&周刊合集 | 🎡生产力工具与行业应用大全 | 🧡 点赞关注评论拜托啦! 🤖 独立开发者必看,出海应用开发者合规手册 这是 JourneymanChina 多年出海经验教训的总结,适用于Google Play 以…

在Wamp环境中如何下载Composer并且使用Laravel配置Apache服务器

一.Composer的安装 方法1.到Composer官网Composer (getcomposer.org)下载 点击Composer-Setup.exe下载Composer安装包 点击Next 这里选择你的php.exe的地址 然后一直点next结束。 然后打开cmd命令输入composer -v看是否运行成功。 方法2.CMD命令安装composer php -r &quo…

学生考试作弊检测系统 yolov8

学生考试作弊检测系统采用yolov8网络模型人工智能技术,学生考试作弊检测系统过在考场中安装监控设备,对学生的作弊行为进行实时监测。当学生出现作弊行为时,学生考试作弊检测系统将自动识别并记录信息。YOLOv8 算法的核心特性和改动可以归结为…

SolVES 模型与多技术融合【多语言】实现生态系统服务功能社会价值评估及拓展案例分析

生态系统服务是人类从自然界中获得的直接或间接惠益,可分为供给服务、文化服务、调节服务和支持服务4类,对提升人类福祉具有重大意义,且被视为连接社会与生态系统的桥梁。自从启动千年生态系统评估项目(Millennium Ecosystem Asse…

IDEA中Maven依赖包下载不了的一种“奇怪”解决方案【亲测有效】

💧 记录一下今天遇到的 b u g \color{#FF1493}{记录一下今天遇到的bug} 记录一下今天遇到的bug💧 🌷 仰望天空,妳我亦是行人.✨ 🦄 个人主页——微风撞见云的博客🎐 🐳 数据结构与算法…

Linux - fd文件描述符和文件详解

​​​​​​​ ​​​​​​​ ​​​​​​​ 感谢各位 点赞 收藏 评论 三连支持 本文章收录于专栏【Linux系统编程】 ❀希望能对大家有所帮助❀ 本文章由 风君子吖 原创 ​​​​​​​ ​​​​​​​ ​​​​​​​ …

WPF 如何实时查看页面元素如何使用实时可视化树

文章目录 往期回顾可视化页面元素如何使用调试工具 总结 往期回顾 WPF 学习:如何使用实时可视化树,照着MaterialDesign的Demo学习 可视化页面元素 我们知道,网页的页面元素是可以通过按F12查看代码。查看到页面元素的。 WPF也有类似的工具…

基于相位共轭法的散射聚焦成像研究-Matlab代码

▒▒本文目录▒▒ 一、引言二、相位共轭法散射聚焦成像Matlab仿真三、参考文献四、Matlab程序开发与实验指导 一、引言 一直以来,研究人员致力于分析造成散射的原因、随机介质性质以及各种散射光的特征,并且研究透过散射介质成像。1990年,I.…

模型剪枝:给模型剪个头发

本文来自公众号“AI大道理”。 深度学习网络模型从卷积层到全连接层存在着大量冗余的参数,大量神经元激活值趋近于0,将这些神经元去除后可以表现出同样的模型表达能力,这种情况被称为过参数化,而对应的技术则被称为模型剪枝。 网…

在价格战中苦苦挣扎的小鹏汽车和蔚来,哪个是最好的电动汽车股?

来源:猛兽财经 作者:猛兽财经 总结: 从长期来看,小鹏汽车(XPEV)的基本面优于蔚来(NIO),小鹏汽车目前的估值也更有吸引力,在全球电动汽车行业中也具有更好的长期投机性。 猛兽财经的投资组合中其中有一部分…

断更两个月的感悟

清明时节雨纷纷, 路上行人欲断魂, 借问酒家何处有, 牧童遥指杏花村。 1.断更 武汉的三月和四月是个多雨的季节,这样的天气经常让我患得患失,由于一些原因(后文再详细说明),不知不觉…

【Linux】分析Fuse中libfuse源码

在Linux中,我们可以使用FUSE来进行自定义用户态文件系统的实现。编译example中的示例是学习FUSE的第一步,本文侧重于剖析FUSE的client端的源码。 文章目录 (一) 下载libfuse源码,避免重复造轮子(二&#xf…

什么是WePY?

WePY(微信小程序开发框架)是一个基于组件化开发思想的微信小程序开发框架。它类似于Vue.js框架,通过封装小程序原生的API,提供了更加简洁、高效的开发方式。 WePY的主要特点包括: 组件化开发:WePY将页面拆…

分布式锁原理与实战二:公平锁和可重入锁的原理

在单体的应用开发场景中,涉及并发同步的时候,大家往往采用synchronized 或者 Lock 的方式来解决多线程间的同步问题。但在分布式集群工作的开发场景中,那么就需要一种更加高级的锁机制,来处理种跨JVM 进程之间的数据同步问题&…

论证有效性写作模板

析错口诀: 1.概念不明确,我就说它概念模糊,并做不利它的解释。【有概念模糊之嫌,A是理解1?还是理解2?】 2.概念有变换,我就说它混淆概念,并指出混淆的环节。(概念推概念&…

华为OD机试真题 Java 实现【数列描述】【2023 B卷 100分】,附详细解题思路

一、题目描述 有一个数列a[N] (N60),从a[0]开始,每一项都是一个数字。数列中a[n1]都是a[n]的描述。其中a[0]1。 规则如下: a[0]:1 a[1]:11(含义:其前一项a[0]1是1个1,即“11”。表示a[0]从左到右,连续出…

【数据结构】图的定义、存储

对王道数据结构选择题做错和不清楚的题的简单纠错 图的定义 一个有n个顶点和n条边的无向图一定是有环的 一个无向图有n个顶点和n-1条边,可以使它连通单没有环,若再加一条边,则会形成环 若图中顶点数为n,则它的生成树有n-1条边&am…

网际互联及OSI七层模型:

网际互联及OSI七层模型: 物理层、数据链路层、网络层、传输层、会话层、表示层、应用层 物理层 作用:定义一些电器,机械,过程和规范,如集线器; PDU(协议数据单元):bit/比特 设备&#xff…