Linux | 进程控制

news2024/11/24 6:37:25

在这里插入图片描述
啊我摔倒了..有没有人扶我起来学习....


👱个人主页: 《 C G o d 的个人主页》 \color{Darkorange}{《CGod的个人主页》} CGod的个人主页》交个朋友叭~
💒个人社区: 《编程成神技术交流社区》 \color{Darkorange}{《编程成神技术交流社区》} 《编程成神技术交流社区》加入我们,一起高效学习,收割好Offer叭~
🌱刷题链接: 《 L e e t C o d e 》 \color{Darkorange}{《LeetCode》} LeetCode快速成长的渠道哦~


目录

  • 前言
  • 一、进程创建
    • 1.1 fork函数初识
    • 1.2 写时拷贝
    • 1.3 fork常规用法
    • 1.4 fork调用失败的原因
  • 二、进程终止
    • 2.1 进程退出场景
    • 2.2 进程常见退出方法
    • 2.3 _exit函数
    • 2.4 exit函数
    • 2.5 return退出
  • 三、进程等待
    • 3.1 进程等待必要性
    • 3.2 进程等待的方法
    • 3.3 获取子进程status
    • 3.4 具体代码实现
  • 四、进程程序替换
    • 4.2 替换函数
    • 4.3 函数解释
    • 4.4 命名理解
  • 五、做一个简易的shell
  • 六、思考函数和进程之间的相似性


前言


一、进程创建

1.1 fork函数初识

  • 在linux中fork函数时非常重要的函数,它从已存在进程中创建一个新进程。新进程为子进程,而原进程为父进程
#include <unistd.h>
pid_t fork(void);
返回值:子进程中返回0,父进程返回子进程id,出错返回-1
  • 进程调用fork,当控制转移到内核中的fork代码后,内核做了一下工作:

    • 分配新的内存块和内核数据结构给子进程
    • 将父进程部分数据结构内容拷贝至子进程
    • 添加子进程到系统进程列表当中
    • fork返回,开始调度器调度
      在这里插入图片描述
  • 当一个进程调用fork之后,就有两个二进制代码相同的进程。而且它们都运行到相同的地方。但每个进程都将可以开始它们自己的旅程,看如下程序:

#include <unistd.h>
pid_t fork(void);
返回值:自进程中返回0,父进程返回子进程id,出错返回-1
int main( void )
{
   pid_t pid;
 
   printf("Before: pid is %d\n", getpid());
   if ( (pid=fork()) == -1 )perror("fork()"),exit(1);
   printf("After:pid is %d, fork return %d\n", getpid(), pid);
   sleep(1);
   return 0;
}   
 
运行结果:
[bobo@VM-12-16-centos]$ ./a.out
Before: pid is 43676
After:pid is 43676, fork return 43677
After:pid is 43677, fork return 0
  • 这里看到了三行输出,一行before,两行after。进程43676先打印before消息,然后它有打印after。另一个after消息有43677打印的。注意到进程43677没有打印before,为什么呢?如下图所示:
    在这里插入图片描述
  • 所以,fork之前父进程独立执行,fork之后,父子两个执行流分别执行。注意,fork之后,谁先执行完全由调度器决定

1.2 写时拷贝

  • 通常,父子代码共享,父子再不写入时,数据也是共享的,当任意一方试图写入,便以写时拷贝的方式各自一份副本。具体见下图:
    在这里插入图片描述

1.3 fork常规用法

  • 一个父进程希望复制自己,使父子进程同时执行不同的代码段。例如,父进程等待客户端请求,生成子进程来处理请求
  • 一个进程要执行一个不同的程序。例如子进程从fork返回后,调用exec函数

1.4 fork调用失败的原因

  • 系统中有太多的进程
  • 实际用户的进程数超过了限制

二、进程终止

2.1 进程退出场景

  • 代码运行完毕,结果正确
  • 代码运行完毕,结果不正确
  • 代码异常终止

2.2 进程常见退出方法

正常终止(可以通过 echo $?查看进程退出码):

  1. 从main返回
  2. 库函数exit
  3. 系统调用_exit

异常退出:

  • ctrl + c,信号终止

2.3 _exit函数

 #include <unistd.h>
void _exit(int status);
参数:status 定义了进程的终止状态,父进程通过wait来获取该值

说明: 虽然status是int,但是仅有低8位可以被父进程所用。所以_exit(-1)时,在终端执行$?发现返回值是255

2.4 exit函数

#include <unistd.h>
void exit(int status);
  • exit最后也会调用exit, 但在调用exit之前,还做了其他工作:
    1. 执行用户通过 atexit或on_exit定义的清理函数。
    2. 关闭所有打开的流,所有的缓存数据均被写入
    3. 调用_exit
      在这里插入图片描述
      实例:
//1.exit
#include <unistd.h>
void exit(int status);
int main()
{
    printf("hello");
    exit(0);
}
运行结果:
[bobo@VM-12-16-centos]$ ./a.out
hello[bobo@VM-12-16-centos]$
 
//2._exit
int main()
{
    printf("hello");
    _exit(0);
}
运行结果:
[bobo@VM-12-16-centos]$ ./a.out
[bobo@VM-12-16-centos]$ 

2.5 return退出

  • return是一种更常见的退出进程方法。执行return n等同于执行exit(n),因为调用main的运行时函数会将main的返回值当做 exit 的参数

三、进程等待

3.1 进程等待必要性

  • 之前讲过,子进程退出,父进程如果不管不顾,就可能造成‘僵尸进程’的问题,进而造成内存泄漏
  • 另外,进程一旦变成僵尸状态,那就刀枪不入,“杀人不眨眼”的kill -9 也无能为力,因为谁也没有办法杀死一个已经死去的进程
  • 最后,父进程派给子进程的任务完成的如何,我们需要知道。如,子进程运行完成,结果对还是不对,或者是否正常退出
  • 父进程通过进程等待的方式,回收子进程资源,获取子进程退出信息

3.2 进程等待的方法

wait方法:

#include<sys/types.h>
#include<sys/wait.h>
 
pid_t wait(int*status);
 
返回值:
    成功返回被等待进程pid,失败返回-1。
参数:
    输出型参数,获取子进程退出状态,不关心则可以设置成为NULL

waitpid方法:

pid_ t waitpid(pid_t pid, int *status, int options);
返回值:
    当正常返回的时候waitpid返回收集到的子进程的进程ID;
    如果设置了选项WNOHANG,而调用中waitpid发现没有已退出的子进程可收集,则返回0;
    如果调用中出错,则返回-1,这时errno会被设置成相应的值以指示错误所在;
参数:
    pid:
        Pid=-1,等待任一个子进程。与wait等效。
        Pid>0.等待其进程ID与pid相等的子进程。
    status:
        WIFEXITED(status): 若为正常终止子进程返回的状态,则为真。(查看进程是否是正常退出)
        WEXITSTATUS(status): 若WIFEXITED非零,提取子进程退出码。(查看进程的退出码)
    options:
        WNOHANG: 若pid指定的子进程没有结束,则waitpid()函数返回0,不予以等待。若正常结束,则返回该子进
程的ID。
  • 如果子进程已经退出,调用wait/waitpid时,wait/waitpid会立即返回,并且释放资源,获得子进程退出信息
  • 如果在任意时刻调用wait/waitpid,子进程存在且正常运行,则进程可能阻塞
  • 如果不存在该子进程,则立即出错返回

在这里插入图片描述

3.3 获取子进程status

  • wait和waitpid,都有一个status参数,该参数是一个输出型参数,由操作系统填充
  • 如果传递NULL,表示不关心子进程的退出状态信息
  • 否则,操作系统会根据该参数,将子进程的退出信息反馈给父进程
    status不能简单的当作整形来看待,可以当作位图来看待,具体细节如下图(只研究status低16比特位)

在这里插入图片描述

测试代码:
#include <sys/wait.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
 
int main( void )
{
    pid_t pid;
 
    if ( (pid=fork()) == -1 )
        perror("fork"),exit(1);
 
    if ( pid == 0 ){
        sleep(20);
        exit(10);
    } else {
        int st;
        int ret = wait(&st);
        
        if ( ret > 0 && ( st & 0X7F ) == 0 ){ // 正常退出
            printf("child exit code:%d\n", (st>>8)&0XFF);
        } else if( ret > 0 ) {  // 异常退出
            printf("sig code : %d\n", st&0X7F );
        }
    }
}
 
测试结果:
[bobo@VM-12-16-centos]$ ./a.out #等20秒退出
child exit code:10 
[bobo@VM-12-16-centos]$ ./a.out #在其他终端kill掉
sig code : 9

3.4 具体代码实现

进程的阻塞等待方式:

#include <stdio.h>  
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h> 

int main()
{
    pid_t pid;
    pid = fork();
    if (pid < 0)
    {
        printf("%s fork error\n", __FUNCTION__);
        return 1;
    }
    else if (pid == 0)
    { //child
        printf("child is run, pid is : %d\n", getpid());
        sleep(5);
        exit(257);
    }
    else
    {
        int status = 0;
        pid_t ret = waitpid(-1, &status, 0);//阻塞式等待,等待5S
        printf("this is test for wait\n");
        if (WIFEXITED(status) && ret == pid)
        {
            printf("wait child 5s success, child return code is :%d.\n", WEXITSTATUS(status));
        }
        else
        {
            printf("wait child failed, return.\n");
            return 1;
        }
    }
    return 0;
}

输出:在这里插入图片描述

进程的非阻塞等待方式:

#include <stdio.h>  
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>

int main()
{
    pid_t pid;

    pid = fork();
    if (pid < 0)
    {
        printf("%s fork error\n", __FUNCTION__);
        return 1;
    }
    else if (pid == 0)
    {   //child
        printf("child is run, pid is : %d\n", getpid());
        sleep(5);
        exit(1);
    }
    else 
    {
        int status = 0;
        pid_t ret = 0;
        do
        {
            ret = waitpid(-1, &status, WNOHANG);//非阻塞式等待
            if (ret == 0) 
            {
                printf("child is running\n");
            }
            sleep(1);
        } while (ret == 0);

        if (WIFEXITED(status) && ret == pid) 
        {
            printf("wait child 5s success, child return code is :%d.\n", WEXITSTATUS(status));
        }
        else 
        {
            printf("wait child failed, return.\n");
            return 1;
        }
    }
    return 0;
}

输出:在这里插入图片描述

四、进程程序替换

##4.1 替换原理

  • 用fork创建子进程后执行的是和父进程相同的程序(但有可能执行不同的代码分支),子进程往往要调用一种exec函数以执行另一个程序。当进程调用一种exec函数时,该进程的用户空间代码和数据完全被新程序替换,从新程序的启动例程开始执行。调用exec并不创建新进程,所以调用exec前后该进程的id并未改变
    在这里插入图片描述

4.2 替换函数

  • 其实有六种以exec开头的函数,统称exec函数:
#include <unistd.h>`
 
int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg, ...,char *const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execve(const char *path, char *const argv[], char *const envp[]);

4.3 函数解释

  • 这些函数如果调用成功则加载新的程序从启动代码开始执行,不再返回
  • 如果调用出错则返回-1
  • 所以exec函数只有出错的返回值而没有成功的返回值

4.4 命名理解

这些函数原型看起来很容易混,但只要掌握了规律就很好记

  • l(list) : 表示参数采用列表
  • v(vector) : 参数用数组
  • p(path) : 有p自动搜索环境变量PATH
  • e(env) : 表示自己维护环境变量
    在这里插入图片描述

exec调用举例如下:

#include <unistd.h>

int main()
{
    char* const argv[] = { "ps", "-ef", NULL };
    char* const envp[] = { "PATH=/bin:/usr/bin", "TERM=console", NULL };

    execl("/bin/ps", "ps", "-ef", NULL);

    // 带p的,可以使用环境变量PATH,无需写全路径
    execlp("ps", "ps", "-ef", NULL);

    // 带e的,需要自己组装环境变量
    execle("ps", "ps", "-ef", NULL, envp);

    execv("/bin/ps", argv);

    // 带p的,可以使用环境变量PATH,无需写全路径
    execvp("ps", argv);

    // 带e的,需要自己组装环境变量
    execve("/bin/ps", argv, envp);

    exit(0);
}
  • 事实上,只有execve是真正的系统调用,其它五个函数最终都调用 execve,所以execve在man手册第2节,其它函数在man手册第3节。这些函数之间的关系如下图所示
  • 下图exec函数族 一个完整的例子:

在这里插入图片描述

五、做一个简易的shell

  • 考虑下面这个与shell典型的互动:
[root@localhost epoll]# ls
client.cpp  readme.md  server.cpp  utility.h
[root@localhost epoll]# ps
  PID TTY          TIME CMD
 3451 pts/0    00:00:00 bash
 3514 pts/0    00:00:00 ps
  • 用下图的时间轴来表示事件的发生次序。其中时间从左向右。shell由标识为sh的方块代表,它随着时间的流逝从左向右移动。shell从用户读入字符串"ls"。shell建立一个新的进程,然后在那个进程中运行ls程序并等待那个进程结束
    在这里插入图片描述

  • 然后shell读取新的一行输入,建立一个新的进程,在这个进程中运行程序 并等待这个进程结束。 所以要写一个shell,需要循环以下过程:

    1. 获取命令行
    2. 解析命令行
    3. 建立一个子进程(fork)
    4. 替换子进程(execvp)
    5. 父进程等待子进程退出(wait)
  • 根据这些思路,和我们前面的学的技术,就可以自己来实现一个shell了。

实现代码:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>

#define MAX_CMD 1024
char command[MAX_CMD];

int do_face()
{
    memset(command, 0x00, MAX_CMD);
    printf("minishell$ ");
    fflush(stdout);
    if (scanf("%[^\n]%*c", command) == 0)
    {
        getchar();
        return -1;
    }
    return 0;
}
char** do_parse(char* buff)
{
    int argc = 0;
    static char* argv[32];
    char* ptr = buff;

    while (*ptr != '\0')
    {
        if (!isspace(*ptr))
        {
            argv[argc++] = ptr;
            while ((!isspace(*ptr)) && (*ptr) != '\0')
            {
                ptr++;
            }
        }
        else {
            while (isspace(*ptr))
            {
                *ptr = '\0';
                ptr++;
            }
        }
    }
    argv[argc] = NULL;
    return argv;
}
int do_exec(char* buff)
{
    char** argv = { NULL };

    int pid = fork();
    if (pid == 0)
    {
        argv = do_parse(buff);
        if (argv[0] == NULL)
        {
            exit(-1);
        }
        execvp(argv[0], argv);
    }
    else
    {
        waitpid(pid, NULL, 0);
    }
    return 0;
}
int main(int argc, char* argv[])
{
    while (1)
    {
        if (do_face() < 0)
            continue;
        do_exec(command);
    }
    return 0;
}

六、思考函数和进程之间的相似性

exec/exit就像call/return:

  • 一个C程序有很多函数组成。一个函数可以调用另外一个函数,同时传递给它一些参数。被调用的函数执行一定的操作,然后返回一个值。每个函数都有他的局部变量,不同的函数通过call/return系统进行通信
  • 这种通过参数和返回值在拥有私有数据的函数间通信的模式是结构化程序设计的基础。Linux鼓励将这种应用于程序之内的模式扩展到程序之间。如下图 :
    在这里插入图片描述
  • 一个C程序可以fork/exec另一个程序,并传给它一些参数。这个被调用的程序执行一定的操作,然后通过exit(n)来返回值。调用它的进程可以通过wait(&ret)来获取exit的返回值

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/609251.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis的内存策略

过期Key处理: 1)Redis之所以性能强大&#xff0c;最主要的原因就是基于内存来存储&#xff0c;然而单节点的Redis内存不宜设置的过大&#xff0c;否则会影响持久化或者是主从复制的性能&#xff0c;可以通过修改配置文件来设置redis的最大内存&#xff0c;通过maxmemory 1gb&am…

javaScript蓝桥杯-----粒粒皆辛苦

目录 一、介绍二、准备三、目标四、代码五、完成 一、介绍 俗话说“民以食为天”&#xff0c;粮食的收成直接影响着民生问题&#xff0c;通过对农作物产量的统计数据也能分析出诸多实际问题。 接下来就让我们使用 ECharts 图表&#xff0c;完成 X 市近五年来的农作物产量的统…

Python批量下载参考文献|基于Python的Sci-Hub下载脚本|Python批量下载sci-hub文献|如何使用sci-hub批量下载论文

本篇博文将介绍如何通过Python的代码实现快速下载指定DOI号对应的文献&#xff0c;并且使用Sci-Hub作为下载库。 一、库函数准备 在开始之前&#xff0c;我们需要先安装一些必要的库&#xff0c;包括&#xff1a; requests&#xff1a;发送HTTP请求并获取响应的库&#xff1…

南山城市更新--向南村(一期,二期)项目详情

向南村&#xff08;一期&#xff09;城市更新单元项目简介 项目于2010年被列入《深圳城市更新单元规划制定计划第一批计划》中&#xff0c;申报主体为向南实业股份有限公司&#xff0c;后与恒大合作开发。 项目位于南山区桂庙路南侧&#xff0c;毗邻前海、衔接后海&am…

经典算法:Fenwick Tree

经典算法&#xff1a;Fenwick Tree 1. 算法简介2. 原理介绍3. 算法实现4. 例题说明 1. 解题思路2. 代码实现 5. 参考链接 1. 算法简介 Fenwick Tree又称为Binary Indexed Tree&#xff0c;也算是一种常见的数据结构了。 他其实某种意义上来说算是Segment Tree的一种变体&…

克隆虚拟机

上一篇我们已经讲过了启动虚拟机并安装Linux系统&#xff0c;下面我们来讲一下如何通过已经创建好的虚拟机spark01克隆出spark02和spark03来&#xff0c;从而满足搭建大数据集群环境需要多台虚拟机的需求。 首先我们要理解两个概念&#xff1a; 1.完整克隆 完整克隆的虚拟机可…

【算法证明 三】计算顺序统计量的复杂度

计算顺序统计量&#xff0c;在 c 标准库中对应有一个函数&#xff1a;nth_element。其作用是求解一个数组中第 k 大的数字。常见的算法是基于 partition 的分治算法。不难证明这种算法的最坏复杂度是 Θ ( n 2 ) \Theta(n^2) Θ(n2)。但是其期望复杂度是 Θ ( n ) \Theta(n) …

从源码全面解析 dubbo 服务暴露的来龙去脉

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱敲代码的小黄&#xff0c;独角兽企业的Java开发工程师&#xff0c;CSDN博客专家&#xff0c;阿里云专家博主&#x1f4d5;系列专栏&#xff1a;Java设计模式、Spring源码系列、Netty源码系列、Kafka源码系列、JUC源码…

SpringBoot配置 -- SpringBoot快速入门保姆级教程(二)

文章目录 前言二、SpringBoot配置1. 了解配置文件的3种格式2.yaml格式语法规则3.读取yaml数据的3种方式4.多环境开发配置5.多环境命令行启动参数设置6. 多环境开发兼容问题7.配置文件分类 总结 前言 为了巩固所学的知识&#xff0c;作者尝试着开始发布一些学习笔记类的博客&am…

vcruntime140.dll如何修复

VCRUNTIME140.dll是Windows操作系统上一个非常重要的动态链接库文件&#xff0c;它是由Microsoft Visual C Runtime提供的运行时库文件之一&#xff0c;被许多应用程序用来进行编译和运行。如果该文件丢失或损坏&#xff0c;很多应用程序就无法正常运行&#xff0c;这可能会带来…

三分钟了解SpringBoot配置优先级底层源码解析

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是冰点&#xff0c;从业11年&#xff0c;目前在物流独角兽企业从事技术方面工作&#xff0c;&#x1f342;博主正在努力完成2023计划中&#xff1a;以梦为马&#xff0c;扬帆起航&#xff0c;2023追梦人&#x1f4dd;联系…

关于性能测试平台的一些想法,想跟大家聊一下

目录 一、任务管理 二、用例管理 三、环境管理 四、压测机管理 五、数据管理 六、监控管理 七、日志管理 八、报表管理 九、配置管理 十、系统管理 组织架构 这里我按照每个不同系统归属的项目组为横向&#xff0c;性能测试团队作为职能部门为纵向的矩阵式组织架构为…

JUC学习(二)

目录 Doug Lea — JUC并发包的作者锁框架Lock和Condition接口可重入锁公平锁与非公平锁读写锁锁降级和锁升级队列同步器AQS底层实现公平锁一定公平吗&#xff1f;Condition实现原理 ——————————————————————————————— 在前面&#xff0c;我们了解…

ICV报告:乘光伏新能源汽车之势,功率器件蓄势待发

前言&#xff1a; 电力电子器件&#xff08;Power Electronic Device&#xff09;&#xff0c;又称为功率半导体器件&#xff0c;用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安&#xff0c;电压为数百伏以上)电子器件。功率器件能够承受和控制较大电流、电压…

无限阳光、自动收集阳光CALL、阳光产生速度

简单实现无限阳光 本次实验内容&#xff1a;通过逆向分析植物阳光数量的动态地址找到阳光的基址与偏移&#xff0c;从而实现每次启动游戏都能够使用基址加偏移的方式定位阳光数据&#xff0c;最后我们将通过使用C语言编写通用辅助实现简单的无限阳光外挂&#xff0c;在教程开始…

Vue Router路由管理器

目录&#xff1a; 相关理解基本路由几个注意事项嵌套&#xff08;多级&#xff09;路由路由的query参数命名路由路由的params参数路由的props配置路由跳转的replace方法编程式路由导航缓存路由组件activated和deactivated路由守卫路由器的两种工作模式 相关理解 vue-route…

博学谷学习记录】超强总结,用心分享 | 架构师 敏捷开发 学习总结

文章目录 敏捷开发1. 概述2. 敏捷开发 敏捷开发 1. 概述 随着软件开发技术的不断发展&#xff0c;现在出现了很多种不同的开发模式&#xff0c;其实敏捷开发已经成为现在很多企业开发应用程序都想要选择的开发方案&#xff0c;那么什么是敏捷开发呢&#xff1f;1.1 四种开发模…

Linux 配置Java环境(一)

Linux 配置Java环境 一、配置Java环境1、查看系统是否有java环境2、卸载系统自带的jdk3、创建一个文件夹用于存放java的压缩包4、包下载好的jdk拖到java文件夹5、安装jdk6、配置环境变量7、让配置生效8、验证是否配置成功 一、配置Java环境 1、查看系统是否有java环境 输入指…

nginx中location和rewrite

常用的Nginx 正则表达式 ^ &#xff1a;匹配输入字符串的起始位置 $ &#xff1a;匹配输入字符串的结束位置 * &#xff1a;匹配前面的字符零次或多次。如“ol*”能匹配“o”及“ol”、“oll” &#xff1a;匹配前面的字符一次或多次。如“ol”能匹配“ol”及“oll”、“olll…

0-1背包问题:动态规划的经典应用

文章目录 引言背包问题简介0-1背包问题定义0-1背包问题的限制条件 动态规划解决思路状态定义状态转移方程 背包问题的Java实现示例与分析 总结 引言 背包问题是在给定一组物品和一个背包容量的情况下&#xff0c;如何选择物品放入背包&#xff0c;以使得放入背包的物品总价值最…