【3000字帮你深度剖析数据在内存中的存储】

news2025/1/11 7:59:54

 本节重点 -- 重中之重

  1. 数据类型详细介绍
  2. 整形在内存中的存储:原码、反码、补码
  3. 大小端字节序介绍及判断
  4. 浮点型在内存中的存储解析

准备好了,开始啰,在小小的花园里面......最近被这个歌曲洗脑,但是我们并不是要唱歌,而是要学技术啦,哈哈哈,正片开始。

数据类型介绍

  • char        //字符数据类型  1字节
  • short       //短整型  2字节
  • int         //整形 4字节
  • long        //长整型 4/8字节
  • long long   //更长的整形 8字节
  • float       //单精度浮点数 4字节
  • double      //双精度浮点数 8字节
  • //C语言有没有字符串类型?没有,但是可以用字符数组存储字符串

类型的意义:

  1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
  2. 如何看待内存空间的视角。

类型的基本归类

整形家族:

浮点数家族:

构造类型:

指针类型:

空类型:

 

 

整形在内存中的存储

        一个变量的创建是要在内存中开辟空间的,而空间的大小是根据不同的类型而决定的。

那么数据在所开辟内存中到底是如何存储的?

比如:

int a = 10;//创建一个变量a,由于是int类型,需要向内存开辟四个字节的空间
int b = -10;//创建一个变量b,由于是int类型,需要向内存开辟四个字节的空间
  • 我们知道为 a 和 b 分配四个字节的空间。
  • 那是如何存储的呢?
  • 接下来听我一一道来

原码、反码、补码

计算机中的整数有三种2进制表示方法,即原码、反码和补码。

三种表示方法均有符号位数值位两部分,符号位都是用0表示“正”,用1表示“负”。

负整数的三种表示方法各不相同。

提示:对于整形来说:数据存放内存中其实存放的是补码。

why?

  1. 在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;
  2. 同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
  3. 在进行计算的时候,符号位也需要参与运算。

  • 我们可以看到对于a和b分别存储的是补码。但是我们发现顺序有点不对劲。
  • 这是又为什么?

大小端介绍

什么是大端小端:

  • 大端(存储)模式:是指数据的低权值位保存在内存的高地址中,而数据的高权值位,保存在内存的低地址中。
  • 小端(存储)模式:是指数据的低权值位保存在内存的低地址中,而数据的高权值位,保存在内存的高地址中。

为什么有大端和小端:

  • 为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8 bit的char之外,还有16 bit的short 型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32 位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
  • 例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为 权值高的字节, 0x22为权值低的字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式 还是小端模式。

设计一个小程序来判断当前机器的字节序。

#include <stdio.h>
//方法一:
int CheckSystem1()
{
	int i = 1;
	return (*(char*)&i);
}
//方法二:
int CheckSystem2()
{
	union
	{
		int i;
		char c;
	}un;
	un.i = 1;
	return un.c;
}

int main()
{
	int ret = CheckSystem1();
	if (ret == 1)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}
	return 0;
}

七个小练习 - 巩固知识

demo1

#include <stdio.h>
int main()
{
    char a = -1;
    signed char b = -1;
    unsigned char c = -1;
    printf("a=%d,b=%d,c=%d", a, b, c);
    return 0;
}

demo2

#include <stdio.h>
int main()
{
    char a = -128;
    printf("%u\n", a);
    return 0;
}

demo3

#include <stdio.h>
int main()
{
    char a = 128;
    printf("%u\n", a);
    return 0;
}

demo4

#include<stdio.h>
int main()
{
	int i = -20;
	unsigned  int  j = 10;
	printf("%d\n", i + j);
	return 0;
}

demo5

#include<stdio.h>
#include<windows.h>
int main()
{
	unsigned int i;
	for (i = 9; i >= 0; i--)
	{
		printf("%u\n", i);
		Sleep(1000);
	}
	return 0;
}

demo6

#include<stdio.h>
#include<string.h>
int main()
{
    char a[1000];
    int i;
    for (i = 0; i < 1000; i++)
    {
        a[i] = -1 - i;
    }
    printf("%d", strlen(a));
    return 0;
}

 

demo7

#include <stdio.h>
unsigned char i = 0;
int main()
{
    for (i = 0; i <= 255; i++)
    {
        printf("hello world\n");
    }
    return 0;
}

 浮点型在内存中的存储

  • 常见的浮点数: 3.14159 1E10
  • 浮点数家族包括: float、double、long double 类型。
  • 浮点数表示的范围:float.h中定义

 

 

浮点数存储的例子:

#include<stdio.h>
int main()
{
	int n = 9;
	float* pFloat = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	*pFloat = 9.0;
	printf("num的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	return 0;
}

输出结果是什么呢?

Why?Why?Why?

  • num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
  • 要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

 

IEEE 754规定:

IEEE 754对有效数字M和指数E,还有一些特别规定。

  • 前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
  • IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的 xxxxxx部分。
  • 比如保存1.01的时 候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。
  • 以32位 浮点数为例,留给M只有23位, 将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

指数E从内存中取出还可以再分成三种情况:

one:

 再看一个加强知识理解

two:

three:

知识讲解完毕,再解释前面的题目: 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/605348.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

linux基础知识学习记录

这里写自定义目录标题 一、 计算机基础知识二 、 Linux操作系统的介绍三、 Linux的安装四、Linux命令使用汇总 一、 计算机基础知识 计算机组成&#xff1a;计算机主要硬件和软件2部分组成。计算机软硬件的概念&#xff1a;硬件是可以看得见的物理实体&#xff0c;软件是运行在…

还在担心期末挂科吗? 期末必备复习资料-----“树“的概念

&#x1f388;个人主页:&#x1f388; :✨✨✨初阶牛✨✨✨ &#x1f43b;推荐专栏: &#x1f354;&#x1f35f;&#x1f32f;C语言进阶 &#x1f511;个人信条: &#x1f335;知行合一 &#x1f349;本篇简介:>:记录期末复习 数据结构中有关树的一些知识 金句分享: ✨我将…

2023最新150道渗透测试面试题

前言 眨眼间2023年快过去一半了&#xff0c;不知道大家有没有找到心仪的工作呀&#xff0c;今天我给大家整理了150道渗透测试面试题给大家&#xff0c;需要答案的话可以在评论区给我留言哦~ 第一套渗透测试面试题 你了解什么是网络安全渗透测试吗&#xff1f; 你的网络安全渗…

Stream相关知识点

这里写目录标题 Stream流体验Stream流Stream流的常见生成方式流程分类具体操作 Stream流常见中间操作之filter简介具体操作 Stream流常见中间操作之limit&skip简介具体操作 Stream流常见中间操作之concat&distinct简介具体操作 Stream流常见中间操作之concat&disti…

什么是SSO

1. 什么是SSO&#xff1f; 「SSO」&#xff08;单一登录single sign on&#xff09;是一种身份验证机制&#xff0c;它允许用户使用单一的凭据登录到多个相关应用程序或系统中。换句话说&#xff0c;用户只需一次登录&#xff0c;就可以访问多个不同的应用程序&#xff0c;无需…

并发专栏-CAS

从 Atomic 到 CAS CAS 知道吗&#xff0c;如何实现&#xff1f; 讲一讲 AtomicInteger&#xff0c;为什么要用 CAS 而不是 synchronized&#xff1f; CAS 底层原理&#xff0c;谈谈你对 UnSafe 的理解&#xff1f; AtomicInteger 的ABA问题&#xff0c;能说一下吗&#xff0c;原…

自学黑客(网络安全/Web安全),一般人我还是劝你算了吧

由于我之前写了不少网络安全技术相关的文章&#xff0c;不少读者朋友知道我是从事网络安全相关的工作&#xff0c;于是经常有人私信问我&#xff1a; 我刚入门网络安全&#xff0c;该怎么学&#xff1f; 要学哪些东西&#xff1f; 有哪些方向&#xff1f; 怎么选&a…

自学网络安全(黑客)该如何系统学习

一、自学网络安全学习的误区和陷阱 1.不要试图以编程为基础的学习开始学习 我在之前的回答中&#xff0c;我都一再强调不要以编程为基础再开始学习网络安全&#xff0c;一般来说&#xff0c;学习编程不但学习周期长&#xff0c;而且实际向安全过渡后可用到的关键知识并不多 一…

layui(1)

Layui镜像站-经典开源模块化前端 UI 框架(官方文档完整镜像) 下载框架包 点击文档&#xff0c;可进入学习界面 1.引入框架包 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-C…

『赠书活动 | 第八期』《ChatGpt全能应用一本通》

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; 『赠书活动 &#xff5c; 第八期』 本期书籍&#xff1a;《ChatGpt全能应用一本通》 赠书规则&#xff1a;评论区&#xff1a;点赞&#xff5c;收藏&#xff5c;留言 …

深度学习(卷积神经网络)

文章目录 动物视觉神经&#xff0c;以及脑科学视网膜——视觉第一站外膝体——信息中转站视皮层——中央处理器小tips 人工神经网络神经认知机模型卷积神经网络结构&#xff08;Convolutional Neural Network&#xff0c;CNN&#xff09;卷积层池化层全连接层输出层softmax函数…

智能离网微逆变系统

文章目录 一、功能描述二、硬件部分2.1、单片机选型及中断号2.1.1、引脚分配 2.2、EG80102.3、控制电路图2.4、主电路图 三、代码流程图四、代码部分展示4.1、主函数4.2、modbus 五、项目演示 一、功能描述 把风光能&#xff0c;逆变为可调压调频的交流电可通过串口屏&#xf…

通过python封装采集商品ID请求获取京东商品详情数据,京东商品详情接口,京东API接口

使用Python封装采集商品ID请求获取京东商品详情数据。具体步骤如下&#xff1a; 使用Python中的requests库发送HTTP请求&#xff0c;获取商品ID列表。采集方法可根据需求选择&#xff0c;如爬虫框架Scrapy、Selenium等。导入京东API的Python SDK&#xff0c;如jdapi&#xff0…

YARN【工作机制】

Yarn概念 Yarn 是一个资源调度平台&#xff0c;负责为运算程序提供服务器运算资源&#xff0c;相当于一个分布式 的 操作系统平台 &#xff0c;而 MapReduce 等运算程序则相当于运行于 操作系统之上的应用程序 。 Yarn的四大组件 YARN 主要由 ResourceManager&#xff08;…

javascript基础十九:说说你对正则表达式的理解?应用场景?

一、是什么 正则表达式是一种用来匹配字符串的强有力的武器 它的设计思想是用一种描述性的语言定义一个规则&#xff0c;凡是符合规则的字符串&#xff0c;我们就认为它“匹配”了&#xff0c;否则&#xff0c;该字符串就是不合法的 在 JavaScript中&#xff0c;正则表达式也是…

MySQL架构简介

MySQL是系统架构中最常见的中间件&#xff0c;主要由Server层&#xff08;连接器Connectors、连接池Connection Pool、查询缓存query cache、分析器Parser、优化器Optimizer、执行器、binlog&#xff09;以及存储引擎层组成。 MySQL架构简介 连接器 与客户端建立连接、认证身…

0803平面及其方程-向量代数与空间解析几何

文章目录 1 曲面方程与空间曲线方程的概念1.1 曲面方程1.2 空间曲线的方程 2 平面的点法式方程3 平面的一般方程4 两平面的夹角4.1 两平面夹角的定义4.2 夹角的余弦公式4.3 点到平面的距离 结语 1 曲面方程与空间曲线方程的概念 1.1 曲面方程 如果曲面与三元方程 ​ F ( x …

安捷伦MSOX4104A示波器/Agilent MSO-X4104A

安捷伦MSOX4104A示波器/Agilent MSO-X4104A 简介&#xff1a; 1GHz带宽 4个模拟通道 集成逻辑计时分析仪 配有业界*大的 12.1 英寸电容触摸屏 产品特点&#xff1a; 五合一的仪器 示波器 逻辑分析仪&#xff08;可选&#xff09; 串行协议分析仪&#xff08;USB2.0、ARIN…

柔性车间作业调度

1柔性车间作业调度 n n n个工件 { J 1 , J 2 , ⋯ , J n } \{J_1,J_2,\cdots,J_n\} {J1​,J2​,⋯,Jn​}要在 m m m台机器 { M 1 , M 2 , ⋯ , M m } \{M_1,M_2,\cdots,M_m\} {M1​,M2​,⋯,Mm​}上加工。每个工件包含一道或多道工序&#xff0c;工序顺序是预先确定的&#xf…

【Java|多线程与高并发】Thread 常见的方法总结

文章目录 1. 前言2. 方法getId()3. 方法getName()4. 方法getState()5. 方法getPriority(int newPriority)6. 方法isDaemon()和setDaemon()7. 方法isAlive()8. 方法isInterrupted()9. 方法currentThread()10. 方法sleep()11. 方法join()12. 总结 1. 前言 本文主要介绍Thread类常…