机器学习集成学习——GBDT(Gradient Boosting Decision Tree 梯度提升决策树)算法

news2025/1/8 17:53:45

系列文章目录

机器学习神经网络——Adaboost分离器算法

机器学习之SVM分类器介绍——核函数、SVM分类器的使用

机器学习的一些常见算法介绍【线性回归,岭回归,套索回归,弹性网络】

文章目录

系列文章目录

前言

一、GBDT(Gradient Boosting Decision Tree) 梯度提升决策树简介

1.1、集成学习

1.2、Boosting

1.3、AdaBoost

1.4、Gradient Boosting

1.5、 决策树与CART

二、GBDT算法的案例解读

2.1、使用梯度提升算法和决策树分类器对手写数字数据进行对比分析

2.2、GBDT算法参数的介绍

2.3、GBDT适用范围

总结


前言

本文主要介绍GBDT算法,以及使用梯度提升算法和决策树分类器对手写数字数据进行对比分析的案例介绍

一、GBDT(Gradient Boosting Decision Tree) 梯度提升决策树简介

DT-Decision Tree决策树,GB是Gradient Boosting,是一种学习策略,GBDT的含义就是用Gradient Boosting的策略训练出来的DT模型

在前几年深度学习还没有大行其道之前,GBDT在各种竞赛是大放异彩。一是效果确实挺不错。二是即可以用于分类也可以用于回归。三是可以筛选特征

1.1、集成学习

集成学习就是将多个弱的学习器结合起来组成一个强的学习器。
这就涉及到,先产生一组‘个体学习器’,再用一个策略将它们结合起来。

个体学习器可以选择:决策树,神经网络。

集成时可以所有个体学习器属于同一类算法:全是决策树,或全是神经网络;也可以来自不同的算法。

结合策略:例如分类问题,可以用投票法,少数服从多数。
之所以用这种集成的思想,是因为单独用一个算法时,效果往往不容易达到很好,但如果多个个体算法结合在一起,取长补短,整体效果就会比单独一个要强。

当然集成并不是不管怎么选择学习器,怎么组合都一定会获得更好的效果,最好的情况是,每个学习器都不是特别差,并且要具有一定的多样性,否则可能集成后的会没有效果,或者起负作用。

这就是集成学习的一个核心问题:如何生成准确性又不是很差,并且还能保证多样性的个体学习器呢

目前主要有两种生成方式:

  • Boosting:个体学习器间存在强依赖关系,必须串行生成。
  • Bagging,随机森林:个体之间不存在强依赖关系,可并行生成。

1.2、Boosting

Boosting 的思想,三个臭皮匠顶一个诸葛亮:

给定初始训练数据,由此训练出第一个基学习器;
根据基学习器的表现对样本进行调整,在之前学习器做错的样本上投入更多关注;
用调整后的样本,训练下一个基学习器;
重复上述过程 T 次,将 T 个学习器加权结合。
简单讲,就是每次训练单个弱学习器时,都将上一次分错的数据权重提高一点再进行当前单个弱学习器的学习。这样越往后执行,训练出的单个弱学习器就会越在意那些容易分错(权重高)的点。当执行 M 次后,通过加权求和的方式组合成一个最终的学习器。

Boosting模型可以抽象为一个前向加法模型(additive model):
根据 Boosting 的定义,它有三个基本要素:

  • 基学习器
  • 组合方式
  • 目标函数

1.3、AdaBoost

Boosting 的代表是 Adaboost。

• 第 1 行,初始化样本权重分布,此时每个数据的权重是一样的,所以是 1/m;
以分类问题为例,最初令每个样本的权重都相等,对于第 t 次迭代操作,我们就根据这些权重来选取样本点,进而训练分类器 C_t。
• 第 2 行,进入 for 循环 T 次,即基学习器的个数为 T 个;
• 第 3 行,根据具有当前权重分布 D_t 的数据集,学习出 h_t;
前一个分类器分错的样本会被用来训练下一个分类器。
h_t 是分量分类器 C_t 给出的对任一样本点 xi 的标记(+1或-1),h_t(xi) = yi 时,样本被正确分类。
• 第 4 行,计算当前学习器的误差;
• 第 5 行,如果误差大于 0.5,就停止;
AdaBoost 方法中使用的分类器可能很弱(比如出现很大错误率),但只要它的分类效果比随机好一点(比如两类问题分类错误率略小于0.5),就能够改善最终得到的模型。
• 第 6 行,计算当前学习器的权重 α_t;
权值是关于误差的表达式,当下一次分类器再次错分这些点之后,会提高整体的错误率,这样就导致分类器权值变小,进而导致这个分类器在最终的混合分类器中的权值变小,也就是说,Adaboost算法让正确率高的分类器占整体的权值更高,让正确率低的分类器权值更低,从而提高最终分类器的正确率。
• 第 7 行,得到下一时刻的权重分布 D_t+1.
如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它被选中的概率就被降低;相反,如果某个样本点没有被准确地分类,那么它的权重就得到提高。通过这样的方式,AdaBoost 方法能“聚焦于”那些较难分(更富信息)的样本上。

此算法的案例可以参考本篇博客

机器学习神经网络——Adaboost分离器算法

1.4、Gradient Boosting

AdaBoost每一轮基学习器训练过后都会更新样本权重,再训练下一个学习器,最后将所有的基学习器加权组合。AdaBoost使用的是指数损失,这个损失函数的缺点是对于异常点非常敏感,因而通常在噪音比较多的数据集上表现不佳。Gradient Boosting在这方面进行了改进,使得可以使用任何损失函数 (只要损失函数是连续可导的),这样一些比较robust的损失函数就能得以应用,使模型抗噪音能力更强。
和Adaboost不同,Gradient Boosting 在迭代的时候选择梯度下降的方向来保证最后的结果最好。
算法将负梯度作为残差值来学习基本模型h(x).

1.5、 决策树与CART

1976年-1986年,J.R.Quinlan给出ID3算法原型并进行了总结,确定了决策树学习的理论。这可以看做是决策树算法的起点。1993,Quinlan将ID3算法改进成C4.5算法,称为机器学习的十大算法之一。ID3算法的另一个分支是CART(Classification adn Regression Tree, 分类回归决策树),用于预测。这样,决策树理论完全覆盖了机器学习中的分类和回归两个领域。

 决策树
决策树(decision tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。

决策树利用如下图所示的树结构进行决策,每一个非叶子节点是一个判断条件,每一个叶子节点是结论。从跟节点开始,经过多次判断得出结论。

决策树的构建是数据逐步分裂的过程,构建的步骤如下:

  • 步骤1:将所有的数据看成是一个节点,进入步骤2;
  • 步骤2:从所有的数据特征中挑选一个数据特征对节点进行分割,进入步骤3;
  • 步骤3:生成若干孩子节点,对每一个孩子节点进行判断,如果满足停止分裂的条件,进入步骤4;否则,进入步骤2;
  • 步骤4:设置该节点是子节点,其输出的结果为该节点数量占比最大的类别。

从上述步骤可以看出,决策生成过程中有三个重要的问题:

  • (1)数据如何分割
  • (2)如何选择分裂的属性
  • (3)什么时候停止分裂

决策树(decision tree)算法基于特征属性进行分类,其主要的优点:模型具有可读性,计算量小,分类速度快。

二、GBDT算法的案例解读

2.1、使用梯度提升算法和决策树分类器对手写数字数据进行对比分析

#使用梯度提升算法和决策树分类器对手写数字数据进行对比分析
import numpy as np
#导入sklearn内置数据集 
from sklearn.datasets import load_digits
#导入手写数字数据
digits = load_digits()
#以图片形式显示前100号手写数字
import matplotlib.pyplot as plt
plt.figure(1, figsize=(3.5,3.5),facecolor='white') 
for i in range(10): 
    for j in range(10):
        ax= plt.subplot(10,10,10*i+j+1)
        #设置子图的位置
        ax.set_xticks([])
        #隐藏横坐标
        #隐藏纵坐标
        ax.set_yticks([])
        plt.imshow(digits.images[9*i+j],cmap=plt.cm.gray_r,interpolation="nearest")
plt.show()
#导入sklearn中的模型验证类 
from sklearn.model_selection import train_test_split
#使用train test_split函数自动分割训练数据集和测试数据集
x_train,x_test,y_train,y_test = train_test_split(digits.data,digits.target,test_size=0.3)
#导入sklearn模块中的决策树分类器类 
from sklearn.tree import DecisionTreeClassifier
#定义一个决策树分类器对象
dtc = DecisionTreeClassifier()
dtc.fit(x_train,y_train)
#导入sklearn模块中的梯度提升分类器类 
from sklearn.ensemble import GradientBoostingClassifier
#定义一个梯度提升决策树分类器对象
gbc = GradientBoostingClassifier(n_estimators=30,learning_rate=0.1)
gbc.fit(x_train,y_train)
print("单棵决策树在训练集上的性能:%.3f"%dtc.score(x_train,y_train))
print("单棵决策树在测试集上的性能:%.3f"%dtc.score(x_test,y_test))
print("GBDT(T-30)在训练集上的性能:%.3f"%gbc.score(x_train,y_train))
print("GBDT(T-30)在测试集上的性能:%.3f"%gbc.score(x_test,y_test))
#观察弱分类器数量对分类准确度的影响
#弱分类器的最大值
T_max =39
gbc_train_scores=[] 
gbc_test_scores=[] 
for i in range(1,T_max+1):
    gbc = GradientBoostingClassifier(n_estimators=i,learning_rate=0.1)
    gbc.fit(x_train,y_train)
    gbc_train_scores.append(gbc.score(x_train,y_train))
    gbc_test_scores.append(gbc.score(x_test,y_test))
#绘制测试结果
import matplotlib.pyplot as plt
#解决图形中的中文显示乱码
plt.rcParams['font.sans-serif']=['SimHei']
plt.matplotlib.rcParams['axes.unicode_minus']=False 
plt.figure()
#解决图形中的坐标轴负号显示问题
plt.plot(range(1,T_max+1),gbc_train_scores,color='r',label='训练集')
plt.plot(range(1,T_max+1),gbc_test_scores,color='g',label='测试集')
plt.title("基学习器数量对GBDT性能的影响")
plt.xlabel("基分类器数量")
plt.ylabel("准确率")
plt.xlim(1,T_max)
plt.legend()
plt.show()

运行结果:

aba7884f7a4e44b8b8b400f9653adb65.png

单棵决策树在训练集上的性能:1.000
单棵决策树在测试集上的性能:0.822
GBDT(T-30)在训练集上的性能:0.999
GBDT(T-30)在测试集上的性能:0.928

47b638bfbd434d2ba7c114dafdf23960.png

案例二

# 导入GBDT分类器模型
from sklearn.ensemble import GradientBoostingClassifier
# 定义一个GBDT分类器模型,设置参数
gbdt = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3)
# 训练模型
gbdt.fit(X_train, y_train)
# 使用训练好的模型进行预测
y_pred = gbdt.predict(X_test)
# 输出预测结果
print(y_pred)

第一行导入了sklearn库中的GBDT分类器模型。

第二行定义了一个GBDT分类器模型,其中n_estimators表示迭代次数,learning_rate表示学习率,max_depth表示决策树的最大深度。

第三行使用训练数据集进行模型训练。

第四行使用训练好的模型对测试数据集进行预测。

第五行输出预测结果。

案例三

# 导入GBDT分类器模型
from sklearn.ensemble import GradientBoostingClassifier
# 定义一个GBDT分类器模型,设置参数
gbdt = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3, min_samples_split=2, min_samples_leaf=1, max_features=None)
# 训练模型
gbdt.fit(X_train, y_train)
# 使用训练好的模型进行预测
y_pred = gbdt.predict(X_test)
# 输出预测结果
print(y_pred)

在这个例子中,我们使用了n_estimators=100进行了100次迭代,使用了learning_rate=0.1来调整每个决策树的权重,使用了max_depth=3限制了每个决策树的最大深度,使用了min_samples_split=2和min_samples_leaf=1来限制了节点和叶子节点的最小样本数,使用了max_features=None考虑了所有特征。

2.2、GBDT算法参数的介绍

GBDT类在scikit-learn库中有多个参数,以下是其中一些主要参数的说明:

- n_estimators:指定迭代次数,即决策树的个数。默认为100。

- learning_rate:指定学习率,用于调整每个决策树的权重。学习率越小,模型越稳定,但需要更多的迭代次数才能达到较好的结果。默认为0.1。

- max_depth:指定每个决策树的最大深度。默认为3。

- min_samples_split:指定一个节点在被分割之前所需的最小样本数。默认为2。

- min_samples_leaf:指定一个叶子节点所需的最小样本数。默认为1。

- max_features:指定每个节点在进行分割时所考虑的特征数量。默认为None,表示考虑所有的特征。

2.3、GBDT适用范围

GBDT既可以用于分类模型,也可以用于回归模型。在分类模型中,GBDT通过训练多个决策树来预测样本的类别,每个决策树的输出是概率值或者类别标签。在回归模型中,GBDT通过训练多个决策树来预测目标变量的值,每个决策树的输出是一个实数值。

一个分类模型的例子是通过GBDT算法预测信用卡交易是否为欺诈。一个回归模型的例子是通过GBDT算法预测房价。

总结

以上就是今天的内容~

最后欢迎大家点赞👍,收藏⭐,转发🚀,
如有问题、建议,请您在评论区留言💬哦。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/602619.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PHP学习笔记第三天

前言 作者简介:不知名白帽,网络安全学习者。 博客主页:不知名白帽的博客_CSDN博客-网络安全,CTF,内网渗透领域博主 网络安全交流社区:https://bbs.csdn.net/forums/angluoanquan 目录 PHP if..else PHP switch PHP数组 PHP数…

【AI 孙燕姿 || AI 音色转换】RVC 使用图文教程:教你如何实现无难度男女换声(伪音)以及 AI 孙燕姿!

最近,视频网站音乐区up主掀了“AI孙燕姿”的风潮。这种使用AI技术提取某位歌手的音色,再用其替换另一位歌手音色的方式,可以实现接近歌手本人翻唱的逼真效果。除孙燕姿外,面对周杰伦、陶喆、陈奕迅、王菲等众多具有独特嗓音的歌手…

YOLOv3: An Incremental Improvement 全文翻译

YOLOv3 论文全篇完整翻译 摘要 本文介绍了YOLO的一些更新内容!我们进行了一系列小的设计改进,以使其更好。我们还训练了一个相当不错的新网络。它比上一版稍微大一些,但更加准确。不过不用担心,它依然保持了快速性能。在320320像…

C++数据结构:图结构入门

C数据结构 线性顺序表(数组) 线性顺序表(链表) Python风格双向链表的实现 散列表简单实现(hash表) 栈和队列的应用 二叉树之一(数组存储) 二叉树之二(二叉搜索树&#x…

驱动开发:内核PE结构VA与FOA转换

本章将继续探索内核中解析PE文件的相关内容,PE文件中FOA与VA,RVA之间的转换也是很重要的,所谓的FOA是文件中的地址,VA则是内存装入后的虚拟地址,RVA是内存基址与当前地址的相对偏移,本章还是需要用到《驱动开发&#x…

第二十篇、基于Arduino uno,获取MFRC-522 RFID射频IC卡模块的信息,并进行识别——结果导向

0、结果 说明:先来看看串口调试助手显示的结果,"卡号"对应的是IC卡的卡号,"1号已进入"表示识别到正确的卡,也就是之前录入的卡号,因此可以应用到门禁。如果是你想要的,可以接着往下看…

OLED和LCD对比

OLED和LCD对比 今天等离子已不复存在,OLED 出现了新的竞争者。在本概述中,我们将了解这两种技术之间的差异、优缺点等。 我们将从简短介绍每种显示技术的工作原理开始。我们将使用术语“面板”,因为显示技术是功能性电视屏幕的一个组成部分…

(字符串 ) 151. 反转字符串中的单词 ——【Leetcode每日一题】

❓151. 反转字符串中的单词 难度:中等 给你一个字符串 s ,请你反转字符串中 单词 的顺序。 单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开。 返回 单词 顺序颠倒且 单词 之间用单个空格连接的结果字符串。 注意&…

面向对象编程 实验三 sduwh 子窗口与控件的基本用法、资源的使用 参考实验报告1

源自网络收集,仅供参考 实验三收集到两份完整报告,这是其一,另一份见本专栏下一篇文章。 实验题目 《面向对象程序设计》 实验三 实验题目:子窗口与控件的基本用法、资源的使用 整体目的:理解、窗口之间的消息传送…

DAY08_JavaScrip

目录 1 JavaScript1.1 JavaScript简介1.2 JavaScript引入方式1.2.1 内联脚本1.2.2 内部脚本1.2.3 外部脚本 1.3 JavaScript基础语法1.3.1 书写语法1.3.2 输出语句1.3.3 变量1.3.4 数据类型1.3.5 运算符1.3.5.1 \和区别1.3.5.2 类型转换 1.3.6 流程控制语句1.3.6.1 if 语句1.3.6…

常见设计模式

单例模式 单例对象的类必须保证只有一个实例存在,整个系统只能使用一个对象实例,优点:不会频繁地创建和销毁对象,浪费系统资源。缺点是没有抽象层,难以扩展。 单例模式的常见写法: 饿汉式单例模式的写法&…

免安装版MySQL数据库的安装和卸载

说明:MySQL早些版本有分安装版和免安装版,可在官网(https://dev.mysql.com/downloads/mysql/)下载,推荐使用最新版本,是免安装版的,下载完配置一下就可以用。 推荐使用最新版本 安装 我这里以…

第3章“程序的机器级表示”:过程

文章目录 3.7 过程3.7.1 栈帧3.7.2 转移控制3.7.3 寄存器使用惯例3.7.4 过程示例3.7.5 递归过程 3.7 过程 一个过程调用包括将数据(以过程参数和返回值的形式)和控制从代码的一部分传递到另一部分。另外,它还必须在进入时为过程的局部变量分…

金融人不能错过的中国人民大学与加拿大女王大学金融硕士,你不能不知道

金融行业是一个发展飞速的行业,越来越多的优秀人士的涌入,让本就卷起来的金融行业变得异常拥挤,怎么办,想留有一席之地只能不断的提升与攀登,金融人不能错过的中国人民大学与加拿大女王大学金融硕士,你不能…

架构EA演进

架构演进 目录概述需求: 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a better result,wait for change,challenge Survive. happy for hardess to solve den…

spring cloud搭建(service)

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

【C++】海量数据处理面试题(位图和布隆过滤器)

都是大厂面试题哦~ 文章目录 一.位图面试题 1.给定100亿个整数,设计算法找到只出现一次的整数 2.给两个文件,分别有100亿个整数,我们只有1G内存,如何找到两个文件交集? 3.1个文件有100亿个int,1G内…

等价类,边界值,场景法的使用方法和运用场景

等价类: 在很多情况下,很多人想到的测试方法是穷举测试,穷举测试是最全面的测试,但是数据量很大的情况下不太现实,测试效率太低,后来为了减少测试人员的工作量和提高测试的效率和以达到最好的测试质量&…

启明星辰集团CEO严望佳:与AI共生,共建以人为本的数字善治生态体系

近日,2023中国国际大数据产业博览会在贵阳成功召开。启明星辰集团董事长兼首席执行官严望佳应邀出席大会“数据安全产业高质量发展”高端对话,发表“主动应对ChatGPT技术冲击,加强数据安全风险防控”主题演讲,同与会人士共探数据安…

32.有序序列插入一个整数(刷题)

描述 有一个有序数字序列,从小到大排序,将一个新输入的数插入到序列中,保证插入新数后,序列仍然是升序。 输入描述: 第一行输入一个整数N(0≤N≤50)。 第二行输入N个升序排列的整数,输入用空格分隔的N个…