Awesome Uplift Modeling【如何学习因果推断、因果机器学习和Uplift建模?All in here】

news2024/11/15 8:00:18

Awesome-Uplift-Model

How to Apply Causal ML to Real Scene Modeling?How to learn Causal ML?

Github项目地址:👉https://github.com/JackHCC/Awesome-Uplift-Model👈

👉https://github.com/JackHCC/Awesome-Uplift-Model👈


Basic Theory

Book Reading

  • The Book of Why by Judea Pearl, Dana Mackenzie
  • Causal Inference Book (What If) by Miguel Hernán, James Robins FREE download
  • Causal Inference in Statistics: A Primer by Judea Pearl, Madelyn Glymour, Nicholas P. Jewell
  • Elements of Causal Inference: Foundations and Learning Algorithms by Jonas Peters, Dominik Janzing and Bernhard Schölkopf- FREE download
  • Counterfactuals and Causal Inference: Methods and Principles for Social Research by Stephen L. Morgan, Christopher Winship
  • Causal Inference Book by Hernán MA, Robins JM FREE download
  • Causality: Models, Reasoning and Inference by Judea Pearl
  • Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction by Guido W. Imbens and Donald B. Rubin
  • Causal Inference: The Mixtape by Scott Cunningham FREE download
  • Causal Inference for Data Science by Aleix Ruiz de Villa

The most commonly used models for causal inference are Rubin Causal Model (RCM; Rubin 1978) and Causal Diagram (Pearl 1995). Pearl (2000) introduced the equivalence of these two models, but in terms of application, RCM is more accurate, while Causal Diagram is more intuitive, which is highly praised by computer experts.

Donald Bruce Rubin (born December 22, 1943) is an Emeritus Professor of Statistics at Harvard University. He is most well known for the Rubin causal model, a set of methods designed for causal inference with observational data, and for his methods for dealing with missing data.

Judea Pearl (born September 4, 1936) is an Israeli-American computer scientist and philosopher, best known for championing the probabilistic approach to artificial intelligence and the development of Bayesian networks (see the article on belief propagation).

More Details

Pearl’s Structural Causal Model

  • The book of why: The new science of cause and effect
    by Judea Pearl and Dana Mackenzie, 2018. Get Book
    [Must Read] An amazing beginner’s guide to graph-based causality models.
  • Causal inference in statistics: A primer
    by Madelyn Glymour, Judea Pearl, Nicholas P Jewell, 2016. Get Book
    [Must Read] The essense of causal graph, adjustment, and counterfactuals in FOUR easy-to-follow chapters.
  • Causality: Models, Reasoning, and Inference
    by Judea Pearl, 2009. Get Book
    [Suggested] A formal and comprehensive discussion of every corner of Pearl’s causality.

Rubin’s Potential Outcome Model

  • Causal inference in statistics, social, and biomedical sciences
    Guido W Imbens, Donald B Rubin, 2015. Get Book
    [Must Read] A formal and comprehensive discussion of Rubin’s potential outcome framework.

A Mixure of Both Frameworks

  • Causal Inference for The Brave and True
    Matheus Facure, 2021. Get Book
    [Must Read] A new book that describes causality in an amazing mixture of Pearl’s and Rubin’s frameworks.

Disputes between Pearl and Rubin

Not necessarily books. Posts and papers are included.

From Andrew Gelman (Student of Rubin, now Prof. at Columbia U.)
  • Resolving disputes between J. Pearl and D. Rubin on causal inference [Go to post]
    [Must Read] The post from Prof. Gelman shows the disputes from Rubin’s perspective. It helps understand why Pearl’s framework faces great challenges in the statistic community while being so successful in machine learning and social computing.
  • “The Book of Why” by Pearl and Mackenzie [Go to post]
    [Must Read] Critics from Rubin’s causal perspective to the famous guiding book for causality: The book of why.
From Judea Pearl (Prof. at UCLA)
  • Chapter 8, The Book of Why? [Get book]
    [Must Read] Pearl’s overall discussion of the short comings of Rubin’s potential outcome framework.
  • Can causal inference be done in statistical vocabulary? [Go to post]
    [Must Read] Pearl’s initial reponse to Gelman’s critics on The book of why.
  • More on Gelman’s views of causal inference [Go to post]
    [Must Read] Pearl’s next reponse to Gelman’s critics on The book of why.

Code Examples

  • 《Causal Inference The Mixtape》| Code Example
  • 《The Effect》| Code Example

Courses

  • Introduction to Causal Inference (Fall2020) (Free)
  • A Crash Course in Causality: Inferring Causal Effects from Observational Data (Free)
  • Causal Inference with R - Introduction (Free)
  • Causal ML Mini Course (Free)
  • Lectures on Causality: 4 Parts by Jonas Peters
  • Towards Causal Reinforcement Learning (CRL) - ICML’20 - Part I By Elias Bareinboim
  • Towards Causal Reinforcement Learning (CRL) - ICML’20 - Part II By Elias Bareinboim
  • On the Causal Foundations of AI By Elias Bareinboim
  • Judea Pearl: Causal Reasoning, Counterfactuals, and the Path to AGI | Lex Fridman Podcast #56 By Judea Pearl and Lex Fridman
  • NeurIPS 2018 Workshop on Causal Learning
  • Causal Inference Bootcamp by Matt Masten

Tools

Probabilistic programming framework

  • pyro
  • pymc3
  • pgmpy
  • pomegranate

Causal Structure Learning

  • TETRAD
  • CausalDiscoveryToolbox
  • gCastle
  • tigramite

Causal Inference

  • Ananke
  • EconML
  • dowhy
  • causalml
  • WhyNot
  • CausalImpact
  • Causal-Curve
  • grf
  • dosearch
  • causalnex

Datasets and Benchmark

Causal Inference

  • MIMIC II/III Data:ICU数据

    • Data1
    • Data2
  • Advertisement Data:广告数据

  • Geo experiment data:地理数据

  • Economic data for Spanish regions:没有Ground Truth

  • California’s Tobacco Control Program:

  • Air Quality Data:

  • Monetary Policy Data:

  • JustCause:Benchmark

Causal Discovery

  • Causal Inference for Time series Analysis: Problems, Methods and Evaluation
  • Causeme:Benchmark
  • Real Dataset:
    • US Manufacturing Growth Data
    • Diabetes Dataset
    • Temperature Ozone Data
    • OHDNOAA Dataset
    • Neural activity Dataset
    • Human Motion Capture
    • Traffic Prediction Dataset
    • Stock Indices Data
  • Composite Dataset:
    • Confounding/ Common-cause Models
    • Non-Linear Models
    • Dynamic Models
    • Chaotic Models

Other Awesome List

  • awesome-causality-algorithms
  • awesome-causality-data
  • awesome-causality
  • Awesome-Causality-in-CV
  • Awesome-Neural-Logic
  • Awesome-Causal-Inference

How to Apply Causal ML to Real Scene Modeling?

  • 基本概念
  • ATE估计方法

Contact

© JackHCC 2022

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/59730.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

汇编原理理论知识复习

书上重点内容 本篇博客整理老师课上强调的重点理论知识,以便复习备考,如有错误欢迎指正。 这门课主要讲CPU芯片与其他芯片(内存芯片和I/O接口芯片)之间交互。 一条指令的执行过程:取指(从主存取到CPU寄…

(五)Vue之data与el的两种写法

文章目录el的两种写法data的两种写法Vue学习目录 上一篇&#xff1a;&#xff08;四&#xff09;Vue之数据绑定 容器&#xff1a; <div id"root"><h1>hello,{{name}}</h1></div>el的两种写法 (1).new Vue时候配置el属性。 new Vue({el:#r…

【C语言航路】第六站:指针初阶

目录 一、指针是什么 二、指针和指针类型 1.指针类型的意义 2.指针-整数 3.指针解引用 三、野指针 1.野指针的成因 &#xff08;1&#xff09;指针未初始化 &#xff08;2&#xff09;指针越界访问 &#xff08;3&#xff09;指针指向的空间释放 2.如何规避野指针 &a…

伸手运动想象训练与伸手抓取想象的关系

本研究旨在确定为期4周的目标导向性伸手&#xff08;抓取任务&#xff09;的运动想象训练&#xff08;MIT&#xff09;是否会以相同的方式影响伸手&#xff08;MIR&#xff09;和抓取&#xff08;MIG&#xff09;运动想象的皮质活动。试验过程中&#xff0c;我们在健康的年轻参…

基于未知环境下四旋飞行器运动规划应用研究(Matlab代码实现)

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客 &#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜…

QT QDoubleSpinBox 浮点计数器控件(使用详解)

本文详细的介绍了QDoubleSpinBox控件的各种操作&#xff0c;例如&#xff1a;新建界面、获取数值、设置前后缀、设置最大/小值、设置显示精度、关联信号槽、优化信号、关联控件、文件源码、样式表等等操作。 本文是QT控件使用详解的第十五篇 QT QDoubleSpinBox 浮点计数器控件(…

【ArcGIS风暴】ArcGIS栅格影像去除黑边(背景值)方法汇总

文章目录 1. 数据加载时属性中设置去除黑边2. 应用setnull工具去除黑边3. 应用栅格计算器去除黑边4. 应用复制栅格工具去除黑边5. 应用影像分析去除黑边6. 应用镶嵌数据集去除黑边影像产生黑边的原因无外乎在设置无效值时,将无效值设成了0,而影像在导入软件进行渲染时,并没有…

制作一个简单HTML静态网页(HTML+CSS)

&#x1f389;精彩专栏推荐 &#x1f4ad;文末获取联系 ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 &#x1f482; 作者主页: 【主页——&#x1f680;获取更多优质源码】 &#x1f393; web前端期末大作业&#xff1a; 【&#x1f4da;毕设项目精品实战案例 (10…

TensorRT安装

本文是为了记录安装TensorRT过程中遇到的一些问题。 首先进入TensorRT下载页面&#xff0c;选择你要下载的TensorRT版本。 因为TensorRT不同的版本依赖于不同的cuda版本和cudnn版本。所以很多时候我们都是根据我们自己电脑的cuda版本和cudnn版本来决定要下载哪个TensorRT版本。…

[附源码]计算机毕业设计校园招聘系统设计Springboot程序

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

如何收到消息第一时间将网站置灰,难道让程序员上个线?

注意&#xff1a;文本不是讲如何将网站置灰的那个技术点&#xff0c;那个技术点之前汶川地震的时候说过。 本文不讲如何实现技术&#xff0c;而是讲如何在第一时间知道消息后&#xff0c;更快速的实现这个置灰需求的上线。 实现需求不是乐趣&#xff0c;指挥别人去实现需求才…

安全研究 # 二进制代码相似性检测综述

本文参考&#xff1a; [1]方磊,武泽慧,魏强.二进制代码相似性检测技术综述[J].计算机科学,2021,48(05):1-8. (信息工程大学数学工程与先进计算国家重点实验室, 国家重点研发课题,北大核心) 摘要 代码相似性检测常用于代码预测、知识产权保护和漏洞搜索等领域&#xff0c;可分为…

Numpy入门[11]——生成数组的函数

Numpy入门[11]——生成数组的函数 参考&#xff1a; https://ailearning.apachecn.org/ 使用Jupyter进行练习 import numpy as nparange arange 类似于Python中的 range 函数&#xff0c;只不过返回的不是列表&#xff0c;而是数组&#xff1a; arange(start, stop None, st…

Java并发编程—java内存模型2

文章目录重排序数据依赖性as-if-serial重排序对多线程的影响顺序一致性同步程序的顺序一致性效果同步/异步总线事务双重校验锁—————————————————————————————————— 重排序 数据依赖性 数据依赖不能进行重排序 as-if-serial as-if-seri…

[附源码]计算机毕业设计大学生心理健康测评系统

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

Compressed Bloom Filters论文总结

Compressed Bloom Filters论文总结AbstractI. INTRODUCTIONII. COMPRESSED BLOOM FILTERS:THEORYA. Bloom FiltersB. Compressed Bloom FiltersIII. COMPRESSED BLOOM FILTERS:PRACTICEA. ExamplesIV. DELTA COMPRESSIONV. COUNTING BLOOM FILTERSVI. CONCLUSIONAbstract 我们…

Elasticsearch面试题

Elasticsearch面试题 1 为什么要使用Elasticsearch? 系统中的数据&#xff0c;随着业务的发展&#xff0c;时间的推移&#xff0c;将会非常多&#xff0c;而业务中往往采用模糊查询进行数据的搜索&#xff0c;而模糊查询会导致查询引擎放弃索引&#xff0c;导致系统查询数据…

C#/WPF/.NET 找到的程序集清单定义与程序集引用不匹配

vs 窗口报错 引发的异常:“System.Windows.Markup.XamlParseException”(位于 PresentationFramework.dll 中) “初始化“CircularGauge.CircularGaugeControl”时引发了异常。”&#xff0c;行号为“288”&#xff0c;行位置为“23”。代码位置报错 FileLoadException: 未能…

【Qt记录】属性 Q_PROPERTY

使用&#xff1a; Qt 拥有一个属性系统。我经常在QSS中使用 QWidget#SWNotifyMsgDialog QLabel#label_sure[status"normal"]配合在代码中使用 ui.label_sure->setProperty("status","warning"); 函数原型&#xff1a;bool QObject:setProp…

物联网开发笔记(56)- 使用Micropython开发ESP32开发板之手机蓝牙控制舵机

一、目的 这一节我们学习如何使用我们的ESP32开发板来实现通过蓝牙控制接在ESP32开发板上的舵机。 二、环境 ESP32 MG90S舵机 Thonny IDE 几根杜邦线 手机 舵机的链接方法见第54节&#xff1a;物联网开发笔记&#xff08;54&#xff09;- 使用Micropython开发ESP32开发板之…