基于循环神经网络的语言模型:RNNLM、GRULM

news2024/11/22 17:44:30

基于循环神经网络的语言模型:RNNLM

RNNLM首次提出是在《Recurrent neural network based language model》这篇非常重要的神经网络语言模型论文种,发表于2010年。这篇论文的主要贡献是:

  1. 首次提出并实现了一种基于循环神经网络(Recurrent Neural Network)的语言模型,简称RNN语言模型。
  2. 通过在隐藏层引入循环连接来捕捉词汇序列的长程依赖关系,使模型具有更强的序列建模能力。
  3. 克服了NNLM中限制只能输入固定长度上下文,RNN支持可变长度的上下文输入。
  4. 开启了使用更加强大和复杂的神经网络来进行语言建模的研究潮流,如后续提出的LSTM语言模型等。
  5. 基于RNN的语言模型后来也在实践中得到广泛的应用,产生了重大影响。

RNNLM模型结构

xt
st
st-1
yt
  • x x x : 输入层

  • s s s : 隐藏/上下文/状态层

  • y y y : 输出层

  • x t x_t xt : t t t 时刻的输入

  • y t y_t yt : t t t 时刻的输出,下一个词的概率分布。

  • s t s_t st : t t t 时刻隐藏层的状态

模型的输入向量 x t x_t xt 由当前时刻的词向量 w t w_t wt和上一时刻的状态向量 s t − 1 s_{t-1} st1组成:

x t = w t + s t − 1 + : c o n c a t e n a t e x_t = w_t + s_{t-1} \quad + : concatenate xt=wt+st1+:concatenate

模型的正向计算过程如下:

s t j = f ( ∑ i x t i u j i ) (1) s_t^j = f(\sum_i x_t^i u_{ji}) \quad \text{(1)} stj=f(ixtiuji)(1)

y t k = g ( ∑ j s t j v k j ) (2) y_t^k = g(\sum_j s_t^j v_{kj}) \quad \text{(2)} ytk=g(jstjvkj)(2)

f ( z ) f(z) f(z) :为激活函数:

f ( z ) = 1 1 + e − z (3) f(z) = \frac{1}{1 + e^{-z}} \quad \text{(3)} f(z)=1+ez1(3)

g(z), softmax函数:

f ( z m ) = e z m ∑ k e z k (4) f(z_m) = \frac{e^{z_m}}{\sum_k e^{z_k}} \quad \text{(4)} f(zm)=kezkezm(4)

训练细节

  • s 0 s_0 s0 : 初始状态的初始化,采用较小的值例如0.1,当语料足够大时,这个不重要。
  • w t w_t wt : 词的向量表示,采用one-hot编码,实践中长度在:30000 ∼ \sim 200000。
  • 状态层的大小:30 ∼ \sim 500,实验证明语料越大,隐藏层越大。
  • 初始学习率 α = 0.1 \alpha = 0.1 α=0.1,损失没有显著下降减半。

误差函数

E r r o r t = d e s i r e d t − y t (5) Error_t = desired_t - y_t \quad \text{(5)} Errort=desiredtyt(5)

  • d e s i r e d t desired_t desiredt : t t t 时刻真实的下一个词的one-hot编码向量。
  • y t y_t yt : 模型的预测输出。

优化

训练语料的预处理:将所有出现频率低于阈值的单词(在训练文本中)合并为一个特殊的标记。

P ( w t + 1 i ∣ w t , s t − 1 ) = { y t r a r e C r a r e i f w t + 1 i i s r a r e y t i o t h e r w i s e P(w^i_{t+1}|w_t, s_{t-1}) = \begin{equation} \left\{ \begin{aligned} & \frac{y_t^{rare}}{C_{rare}} \quad if \quad w^i_{t+1} \quad is \quad rare \\ & y_t^i \quad otherwise \\ \end{aligned} \right. \end{equation} P(wt+1iwt,st1)= Crareytrareifwt+1iisrareytiotherwise

模型实现:Pytorch

  • 模型没有100%的还原RNNLM,例如词向量的表示,采用了当前比较流行的Embedding
  • 循环连接部分分别实现RNNcell和GRUcell
  • GRUcell:
    1. GRU有两个门结构:重置门和更新门。重置门可以决定遗忘先前的隐状态信息,更新门可以决定保留先前的隐状态信息。
    2. GRU的隐状态只包含一个隐层向量,而普通RNN每一步都会生成一个隐状态向量。
    3. GRU在结构上更加简单,只涉及一个隐状态向量和两个门控制向量,计算量更小。
    4. 实验结果显示,与相同配置的普通RNN相比,GRU能取得更好的性能,特别是在长序列的任务上。
import os
import time
import pandas as pd
from dataclasses import dataclass

import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import Dataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 模型参数
@dataclass
class ModelConfig:
    vocab_size: int = None  
    n_embed : int = None
    n_hidden: int = None

RNNcell

timestep:t
timestep:t-1
ht-1
ht
A
xt
ht-1
A
xt-1
class RNNCell(nn.Module):
    """
    the job of a 'Cell' is to:
    take input at current time step x_{t} and the hidden state at the
    previous time step h_{t-1} and return the resulting hidden state
    h_{t} at the current timestep
    """
    def __init__(self, config):
        super().__init__()
        self.xh_to_h = nn.Linear(config.n_embed + config.n_hidden, config.n_hidden)

    def forward(self, xt, hprev):
        xh = torch.cat([xt, hprev], dim=1)
        ht = F.tanh(self.xh_to_h(xh))
        return ht

GRUcell

reset
update
Wz
Wr
Wh
Sigmoid
rt
Sigmoid
xh
zt
ht-1
concat
xt
hrt-1
*
h't
concat
ht
*
+
1-zt
*
class GRUCell(nn.Module):
    """
    same job as RNN cell, but a bit more complicated recurrence formula
    that makes the GRU more expressive and easier to optimize.
    """
    def __init__(self, config):
        super().__init__()
        # input, forget, output, gate
        self.xh_to_z = nn.Linear(config.n_embed + config.n_hidden, config.n_hidden)
        self.xh_to_r = nn.Linear(config.n_embed + config.n_hidden, config.n_hidden)
        self.xh_to_hbar = nn.Linear(config.n_embed + config.n_hidden, config.n_hidden)

    def forward(self, xt, hprev):
        # first use the reset gate to wipe some channels of the hidden state to zero
        xh = torch.cat([xt, hprev], dim=1)
        r = F.sigmoid(self.xh_to_r(xh))
        hprev_reset = r * hprev
        # calculate the candidate new hidden state hbar
        xhr = torch.cat([xt, hprev_reset], dim=1)
        hbar = F.tanh(self.xh_to_hbar(xhr))
        # calculate the switch gate that determines if each channel should be updated at all
        z = F.sigmoid(self.xh_to_z(xh))
        # blend the previous hidden state and the new candidate hidden state
        ht = (1 - z) * hprev + z * hbar
        return ht
class RNN(nn.Module):

    def __init__(self, config, cell_type):
        super().__init__()
        self.vocab_size = config.vocab_size
        self.start = nn.Parameter(torch.zeros(1, config.n_hidden)) # the starting hidden state
        self.wte = nn.Embedding(config.vocab_size, config.n_embed) # token embeddings table
        if cell_type == 'rnn':
            self.cell = RNNCell(config)
        elif cell_type == 'gru':
            self.cell = GRUCell(config)
        self.lm_head = nn.Linear(config.n_hidden, self.vocab_size)

    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()

        # embed all the integers up front and all at once for efficiency
        emb = self.wte(idx) # (b, t, n_embed)

        # sequentially iterate over the inputs and update the RNN state each tick
        hprev = self.start.expand((b, -1)) # expand out the batch dimension
        hiddens = []
        for i in range(t):
            xt = emb[:, i, :] # (b, n_hidden)
            ht = self.cell(xt, hprev) # (b, n_hidden)
            hprev = ht
            hiddens.append(ht)

        # decode the outputs
        hidden = torch.stack(hiddens, 1) # (b, t, n_hidden)
        logits = self.lm_head(hidden)

        # if we are given some desired targets also calculate the loss
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        return logits, loss

测试数据

数据集来10k+中文外卖评价数据集:

data = pd.read_csv('./dataset/waimai_10k.csv')
data.dropna(subset='review',inplace=True)
data['review_length'] = data.review.apply(lambda x:len(x))
data.sample(5)
labelreviewreview_length
20621价格实惠,值得购买。10
23721很好吃,奶茶还好,天很冷,还没有凉17
63990这么好的店、宫保鸡丁竟然拿土豆充当鸡肉!20多的菜,至于吗?30
31471挺好的,豆浆很好喝~~~12
12481好吃,真的是大肘子肉10

语料统计信息:

data = data[data.review_length <=50] # 滤掉长度超过300的评论
words = data.review.tolist()
chars = sorted(list(set(''.join(words))))    
max_word_length = max(len(w) for w in words)

print(f"number of examples: {len(words)}")
print(f"max word length: {max_word_length}")
print(f"size of vocabulary: {len(chars)}")
number of examples: 10796
max word length: 50
size of vocabulary: 2272

划分训练/测试数据

test_set_size = min(1000, int(len(words) * 0.1)) 
rp = torch.randperm(len(words)).tolist()
train_words = [words[i] for i in rp[:-test_set_size]]
test_words = [words[i] for i in rp[-test_set_size:]]
print(f"split up the dataset into {len(train_words)} training examples and {len(test_words)} test examples")
split up the dataset into 9796 training examples and 1000 test examples

构造字符数据集[tensor]

  • < BLANK> : 0
  • token seqs : [1, 2, 3, 4, 5, 6]
  • x : [0, 1, 2, 3, 4, 5, 6]
  • y : [1, 2, 3, 4, 5, 6, 0]
class CharDataset(Dataset):

    def __init__(self, words, chars, max_word_length):
        self.words = words
        self.chars = chars
        self.max_word_length = max_word_length
        # char-->index-->char
        self.char2i = {ch:i+1 for i,ch in enumerate(chars)}
        self.i2char = {i:s for s,i in self.char2i.items()}    

    def __len__(self):
        return len(self.words)

    def contains(self, word):
        return word in self.words

    def get_vocab_size(self):
        return len(self.chars) + 1      

    def get_output_length(self):
        return self.max_word_length + 1

    def encode(self, word):
        # char sequece ---> index sequence
        ix = torch.tensor([self.char2i[w] for w in word], dtype=torch.long)
        return ix

    def decode(self, ix):
        # index sequence ---> char sequence
        word = ''.join(self.i2char[i] for i in ix)
        return word

    def __getitem__(self, idx):
        word = self.words[idx]
        ix = self.encode(word)
        x = torch.zeros(self.max_word_length + 1, dtype=torch.long)
        y = torch.zeros(self.max_word_length + 1, dtype=torch.long)
        x[1:1+len(ix)] = ix
        y[:len(ix)] = ix
        y[len(ix)+1:] = -1 # index -1 will mask the loss
        return x, y

数据加载器[DataLoader]

class InfiniteDataLoader:
    
    def __init__(self, dataset, **kwargs):
        train_sampler = torch.utils.data.RandomSampler(dataset, replacement=True, num_samples=int(1e10))
        self.train_loader = DataLoader(dataset, sampler=train_sampler, **kwargs)
        self.data_iter = iter(self.train_loader)

    def next(self):
        try:
            batch = next(self.data_iter)
        except StopIteration: # this will technically only happen after 1e10 samples... (i.e. basically never)
            self.data_iter = iter(self.train_loader)
            batch = next(self.data_iter)
        return batch

训练模型

# 模型评估
@torch.inference_mode()
def evaluate(model, dataset, batch_size=10, max_batches=None):
    model.eval()
    loader = DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=0)
    losses = []
    for i, batch in enumerate(loader):
        batch = [t.to('cuda') for t in batch]
        X, Y = batch
        logits, loss = model(X, Y)
        losses.append(loss.item())
        if max_batches is not None and i >= max_batches:
            break
    mean_loss = torch.tensor(losses).mean().item()
    model.train() # reset model back to training mode
    return mean_loss

环境初始化:

torch.manual_seed(seed=12345)
torch.cuda.manual_seed_all(seed=12345)

work_dir = "./Rnn_log"
os.makedirs(work_dir, exist_ok=True)
writer = SummaryWriter(log_dir=work_dir)

模型初始化:

config = ModelConfig(vocab_size=len(chars)+1,
                     n_embed=64,
                     n_hidden=128)

#model = RNN(config,cell_type='rnn')
model = RNN(config,cell_type='gru')

model.to('cuda')
RNN(
  (wte): Embedding(2273, 64)
  (cell): GRUCell(
    (xh_to_z): Linear(in_features=192, out_features=128, bias=True)
    (xh_to_r): Linear(in_features=192, out_features=128, bias=True)
    (xh_to_hbar): Linear(in_features=192, out_features=128, bias=True)
  )
  (lm_head): Linear(in_features=128, out_features=2273, bias=True)
)

初始化数据:

train_dataset = CharDataset(train_words, chars, max_word_length)
test_dataset = CharDataset(test_words, chars, max_word_length)

train_dataset[0][0].shape, train_dataset[0][1].shape
(torch.Size([51]), torch.Size([51]))

Training:

# init optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-4, weight_decay=0.01, betas=(0.9, 0.99), eps=1e-8)
# init dataloader
batch_loader = InfiniteDataLoader(train_dataset, batch_size=128, pin_memory=True, num_workers=4)

# training loop
best_loss = None
step = 0
train_losses, test_losses = [],[]
while True:

    t0 = time.time()

    # get the next batch, ship to device, and unpack it to input and target
    batch = batch_loader.next()
    batch = [t.to('cuda') for t in batch]
    X, Y = batch
    # feed into the model
    logits, loss = model(X, Y)

    # calculate the gradient, update the weights
    model.zero_grad(set_to_none=True)
    loss.backward()
    optimizer.step()
    # wait for all CUDA work on the GPU to finish then calculate iteration time taken
    torch.cuda.synchronize()
    t1 = time.time()

    # logging
    if step % 1000 == 0:
        print(f"step {step} | loss {loss.item():.4f} | step time {(t1-t0)*1000:.2f}ms")

    # evaluate the model
    if step > 0 and step % 100 == 0:
        train_loss = evaluate(model, train_dataset, batch_size=100, max_batches=10)
        test_loss  = evaluate(model, test_dataset,  batch_size=100, max_batches=10)
        train_losses.append(train_loss)
        test_losses.append(test_loss)
        # save the model to disk if it has improved
        if best_loss is None or test_loss < best_loss:
            out_path = os.path.join(work_dir, "model.pt")
            print(f"test loss {test_loss} is the best so far, saving model to {out_path}")
            torch.save(model.state_dict(), out_path)
            best_loss = test_loss

    step += 1
    # termination conditions
    if step > 10100:
        break
step 0 | loss 7.7387 | step time 84.71ms
test loss 5.455846786499023 is the best so far, saving model to ./Rnn_log/model.pt
test loss 5.085928916931152 is the best so far, saving model to ./Rnn_log/model.pt
test loss 4.722366809844971 is the best so far, saving model to ./Rnn_log/model.pt
test loss 4.451460361480713 is the best so far, saving model to ./Rnn_log/model.pt
test loss 4.261294364929199 is the best so far, saving model to ./Rnn_log/model.pt
test loss 4.121057987213135 is the best so far, saving model to ./Rnn_log/model.pt
test loss 4.0212507247924805 is the best so far, saving model to ./Rnn_log/model.pt
test loss 3.935884475708008 is the best so far, saving model to ./Rnn_log/model.pt
test loss 3.87166166305542 is the best so far, saving model to ./Rnn_log/model.pt
step 1000 | loss 3.7037 | step time 66.99ms
.......
test loss 3.476886749267578 is the best so far, saving model to ./Rnn_log/model.pt
step 4000 | loss 2.9470 | step time 57.79ms
step 5000 | loss 2.8236 | step time 60.15ms
step 6000 | loss 2.7413 | step time 60.07ms
step 7000 | loss 2.6398 | step time 58.10ms
step 8000 | loss 2.5385 | step time 58.41ms
step 9000 | loss 2.3928 | step time 58.49ms
step 10000 | loss 2.2889 | step time 57.82ms

RNNLM vs GRULM

在这里插入图片描述


测试:评论生成器

@torch.no_grad()
def generate(model, idx, max_new_tokens, temperature=1.0, do_sample=False, top_k=None):
    for _ in range(max_new_tokens):
        # forward the model to get the logits for the index in the sequence
        logits, _ = model(idx)
        # pluck the logits at the final step and scale by desired temperature
        logits = logits[:,-1,:] / temperature
        # optionally crop the logits to only the top k options
        if top_k is not None:
            v, _ = torch.topk(logits, top_k)
            logits[logits < v[:, [-1]]] = -float('Inf')
        # apply softmax to convert logits to (normalized) probabilities
        probs = F.softmax(logits, dim=-1)
        # either sample from the distribution or take the most likely element
        if do_sample:
            idx_next = torch.multinomial(probs, num_samples=1)
        else:
            _, idx_next = torch.topk(probs, k=1, dim=-1)
         
        # append sampled index to the running sequence and continue
        idx = torch.cat((idx, idx_next), dim=-1)
    return idx
def print_samples(num=13):
    # inital 0 tokens
    X_init = torch.zeros((num, 1), dtype=torch.long).to('cuda')
    steps = train_dataset.get_output_length() - 1 # -1 because we already start with <START> token (index 0)
    X_samp = generate(model, X_init, steps, top_k=None, do_sample=True).to('cuda')
    new_samples = []
    for i in range(X_samp.size(0)):
        # get the i'th row of sampled integers, as python list
        row = X_samp[i, 1:].tolist() # note: we need to crop out the first <START> token
        # token 0 is the <END> token, so we crop the output sequence at that point
        crop_index = row.index(0) if 0 in row else len(row)
        row = row[:crop_index]
        word_samp = train_dataset.decode(row)
        new_samples.append(word_samp)
    return new_samples
print_samples(num=10)
['不好吃,肥肉煎饼!不松心了!',
 '山药有两次,不过小蛋鱼还不错,肉里的不筋道少',
 '草面不值的煎饼',
 '菜给的不错,服务好,速度快,来了!绝对的是辣',
 '速度很快,不贴心吧',
 '好吃,就是量少,味道不怎么样啊',
 '菜品很喜欢,百度骑士特别棒!',
 '金针菇汉堡我喜欢,面好大馅鲜,很好吃,毕竟糊所有菜品不如以前的菜饼。',
 '蛮生的。送过小哥快被味道真差。',
 '巨好吃~!!']

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/595707.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux 目录结构_安装Xshell6和Xftp6教程加 Xshell无法启动:要继续使用此程序........,的解决方法

Linux 目录结构 基本介绍 linux 的文件系统是采用级层式的树状目录结构&#xff0c;在此结构中的最上层是根目录“/”&#xff0c;然后在此目录下再创建其他的目录。深刻理解linux 树状文件目录是非常重要的&#xff0c;这里我给大家说明一下。记住一句经典的话&#xff1a;在…

chatgpt赋能python:Python代码怎么自动排序?全面解析!

Python代码怎么自动排序&#xff1f;全面解析&#xff01; 在软件开发中&#xff0c;很多时候需要对数据进行排序操作&#xff0c;以便更好的管理和使用数据。Python提供了多种排序算法和排序函数&#xff0c;支持自定义排序规则&#xff0c;灵活多样。本文将为大家介绍常见的…

chatgpt赋能python:Python修改默认字体为黑体

Python修改默认字体为黑体 介绍 Python是一种高级编程语言&#xff0c;被广泛应用于人工智能、大数据分析、Web开发等领域。在Python中&#xff0c;字体颜色和样式对于代码阅读和可读性影响很大。然而&#xff0c;用Python自带的默认字体&#xff0c;代码阅读可能会产生疲劳感…

物流货物跟踪管理系统的设计与实现(论文+源码)_kaic

摘 要 为解决物流货物跟踪过程中&#xff0c;跟踪相关信息滞后的问题&#xff0c;本毕业项目设计了物流货物跟踪管理系统。本系统基于B/S架构&#xff0c;采用SSH技术&#xff0c;VUE框架&#xff0c;VS2019平台&#xff0c;Sqlserver数据库&#xff0c;实现了物流公司模块、…

linux系统从零开始搭建CICD jenkins环境

1、操作系统与环境 本文教你从零开始搭建jenkins环境&#xff0c;开始你的CICD之旅。 1.1 系统与安装环境 本文的环境为云服务器环境&#xff0c;系统为linux Red-hat系统。版本信息如下&#xff1a; Linux version 3.10.0-1160.88.1.el7.x86_64 (mockbuildkbuilder.bsys.ce…

基于Java的旅游网站的设计与实现(论文+源码)_kaic

摘 要 旅游业走过了改革开放&#xff0c;到现在依旧蓬勃发展。但是放眼国际社会&#xff0c;我们在旅游业发展的深度和广度上所做的努力还远远不够。在中国&#xff0c;旅游业也将成为经济崛起中的重要一环。目前&#xff0c;我们生活在一个信息时代里。无论是工作&#xff0c;…

chatgpt赋能python:Python:一种强大的编程语言

Python&#xff1a;一种强大的编程语言 介绍 Python是一种高级编程语言&#xff0c;旨在提高开发者的生产力和代码可读性。它是一种动态语言&#xff0c;使编写代码变得更加简单和容易。许多大型组织和企业都使用Python作为主要的编程语言&#xff0c;包括微软、Facebook、Go…

Java开发SDK详解

一、服务端开发 1、前言 1&#xff09;最近在对接外部平台的接口&#xff0c;对方提供了一个sdk&#xff0c;开发中直接引入到项目中。自己只需要组装参数&#xff0c;直接调用sdk中的方法就可以实现接口对接。 2&#xff09;sdk中包含了参数校验&#xff0c;加密验签&#x…

react项目+antd组件-demo:hello-world

在前端开发过程中&#xff0c;有涉及到使用antd组件部分。在项目中加一个antd,调整组件的大小、位置、颜色&#xff0c;花费时间比较多&#xff0c;效率不高&#xff0c;可以通过本文叙述的方式建立一个前端demo&#xff0c;用于调整组件的大小、位置、颜色&#xff0c;验证组件…

C语言_结构体

文章目录 一、结构体结构的基础知识 二、结构体类型的声明三. 结构体初始化四.结构成员的类型五.结构体变量的定义和初始化六.结构体成员访问6.1结构体变量访问成员6.2结构体指针访问指向变量的成员&#xff08;箭头操作符 ->&#xff09; 七.结构体传参总结 一、结构体 结…

MySQL 事务简介

事务简介 事务的起源 狗哥和猫爷是⼀对好基友&#xff0c;他们都到银⾏开⼀个账户&#xff0c;他们在现实世界中拥有的资产就会体现在数据库世界的account表中。⽐如现在狗哥有11元&#xff0c;猫爷只有2元&#xff0c;那么现实中的这个情况映射到数据库的account表就是这样&…

机器学习常识 11: logistic 回归

摘要: logistic 回归是使用超平面将空间分开, 一边是正样本, 另一边是负样本. 因此, 它是一个线性分类器. 1. 线性分类器 如图 1 所示, 若干样本由两个特征描述, 对应于二维平面上的点. 它们为正样本或负样本, 由不同颜色表示. 现在需要使用一条直线将正、负样本分开. 这样, …

比ureport好用的报表工具-VeryReport报表工具

作为一名报表开发人员&#xff0c;你一定知道&#xff0c;一个好用的报表工具是多么重要。它可以让你更快、更准确地完成报表开发任务&#xff0c;并且帮助你更好地展现数据。今天我想向大家介绍一款非常优秀的报表工具——VeryReport报表工具。 编辑搜图 请点击输入图片描述&…

STM32 启动文件选择

1. STM32F1xx 系列 &#xff08;F1&#xff09; STM32F100xB/C: startup_stm32f100xb.s STM32F100xD/E: startup_stm32f100xe.s STM32F101x6/8/B: startup_stm32f101x6.s, startup_stm32f101x8.s, startup_stm32f101xb.s STM32F101xE/F/G: startup_stm32f101xe.s, …

线程安全与互斥锁(访问控制)

线程安全问题 因为多个线程是共享地址空间的&#xff0c;也就是很多资源都是共享的。 优点:通信方便缺点:缺乏访问控制 因为一个线程的操作问题&#xff0c;给其他线程造成了不可控&#xff0c;或者引起崩溃&#xff0c;异常&#xff0c;逻辑不正确等这种现象:线程安全。 创…

基于Java实现农产品交易平台的设计与实现_kaic

【摘要】农业是我国国民经济的重要组成部分&#xff0c;随着信息化的普及&#xff0c;4G网络、光纤以及5G网络也日益完善&#xff0c;农业信息化的发展成为了必然。同时&#xff0c;由于本年疫情原因&#xff0c;导致农作物积压销售&#xff0c;甚至腐烂造成不必要的浪费&#…

chatgpt赋能python:Python信息抽取——帮您更好地利用数据

Python信息抽取——帮您更好地利用数据 什么是Python信息抽取&#xff1f; Python信息抽取是指利用Python编写程序&#xff0c;从大量的非结构化数据中提取有用的信息的技术。这些数据可以是网页、文本文件、PDF等各种格式&#xff0c;而Python信息抽取则可以帮助您快速、准确…

分享一个case when then when then end的sql语句编写用法

目录 写作背景我和若依的前一部分相同思路我的后续解决思路&#xff08;不建议&#xff09;若依后续解决思路&#xff08;建议&#xff09;若依后续解决思路举例 写作背景 平时我用case when then else end的机会也不多&#xff0c;之前用它来做对select结果进行计算&#xff…

chatgpt赋能python:Python代码20行,助力千万SEO从业者快速实现网站分析

Python代码20行&#xff0c;助力千万SEO从业者快速实现网站分析 SEO是现代数字营销的核心战略之一。对于千万从业者而言&#xff0c;网站分析是SEO实践的重要一环。而Python作为一门高效、简洁的编程语言&#xff0c;其丰富的第三方库和易学易用的语法使其成为网站分析的强大工…

【MySQL】从0到1打开数据库管理

目录 前言&#xff1a; 一.认识MySQL 二.安装MySQL数据库 三、启动和停止MySQL服务 3.1启动服务的两种方式 3.2停止服务的两种方式 四.链接客户端 4.1使用自带的命令行窗口 4.2使用系统自带的命令窗口 五.MySQL是存储数据的模型 六.SQL语言 结尾&#xff1a; 前言&a…