ov2640子设备视频操作详细分析

news2025/1/12 7:49:30

ov2640子设备视频操作详细分析


文章目录

  • ov2640子设备视频操作详细分析
  • ov2640_subdev_video_ops视频操作
  • ov2640_s_stream开始流
  • ov2640_g_fmt 获取格式
  • ov2640_s_fmt设置格式
  • ov2640_try_fmt尝试格式
  • ov2640_cropcap裁剪能力
  • ov2640_g_crop获取裁剪
  • ov2640_enum_fmt枚举格式
  • ov2640_g_mbus_config获取总线配置


在这里插入图片描述
在这里插入图片描述

ov2640_subdev_video_ops视频操作

这段代码定义了一个名为ov2640_subdev_video_ops的结构体变量,该变量是struct v4l2_subdev_video_ops类型的,用于配置与视频子设备相关的操作。
这个结构体包含了多个成员函数,每个函数都对应一个特定的操作:
.s_stream: 用于开始流传输的函数,对应的函数名是ov2640_s_stream。
.g_mbus_fmt: 用于获取当前视频格式的函数,对应的函数名是ov2640_g_fmt。
.s_mbus_fmt: 用于设置视频格式的函数,对应的函数名是ov2640_s_fmt。
.try_mbus_fmt: 用于尝试设置视频格式的函数,对应的函数名是ov2640_try_fmt。
.cropcap: 用于获取视频裁剪能力的函数,对应的函数名是ov2640_cropcap。
.g_crop: 用于获取当前裁剪设置的函数,对应的函数名是ov2640_g_crop。
.enum_mbus_fmt: 用于枚举支持的视频格式的函数,对应的函数名是ov2640_enum_fmt。
.g_mbus_config: 用于获取总线配置的函数,对应的函数名是ov2640_g_mbus_config。
这些成员函数定义了视频子设备操作的行为,通过指定相应的函数名,可以在需要时调用对应的操作函数进行处理。

static struct v4l2_subdev_video_ops ov2640_subdev_video_ops = {
    .s_stream    = ov2640_s_stream, // 开始流
    .g_mbus_fmt    = ov2640_g_fmt, // 获取格式
    .s_mbus_fmt    = ov2640_s_fmt, // 设置格式
    .try_mbus_fmt    = ov2640_try_fmt, // 尝试格式
    .cropcap    = ov2640_cropcap, // 裁剪能力
    .g_crop        = ov2640_g_crop, // 获取裁剪
    .enum_mbus_fmt    = ov2640_enum_fmt, // 枚举格式
    .g_mbus_config    = ov2640_g_mbus_config, // 获取总线配置
};

ov2640_s_stream开始流

ov2640_g_fmt 获取格式

这段代码是用于获取 OV2640 摄像头的格式信息的函数。它的作用是更新给定的 struct v4l2_mbus_framefmt 结构体 mf 中的宽度、高度、格式和颜色空间等字段。
函数首先通过 struct v4l2_subdev 结构体指针 sd 获取对应的 struct i2c_client 结构体指针 client,然后通过 to_ov2640 宏将 client 转换为 struct ov2640_priv 结构体指针 priv。
如果 priv->win 指针为空,表示窗口尺寸还没有被选择,则设置默认的宽度为 SVGA_WIDTH,默认的高度为 SVGA_HEIGHT,并通过 ov2640_select_win 函数选择窗口大小,并将返回的窗口信息保存在 priv->win 中,并初始化 priv->cfmt_code 为 MEDIA_BUS_FMT_UYVY8_2X8。
接下来,将 mf 的宽度和高度更新为 priv->win 中的宽度和高度,将 mf->code 更新为 priv->cfmt_code,表示当前的图像格式。根据图像格式的不同,将 mf->colorspace 设置为对应的颜色空间,如果是 MEDIA_BUS_FMT_RGB565_2X8_BE 或 MEDIA_BUS_FMT_RGB565_2X8_LE 格式,则选择 SRGB 颜色空间,否则选择 JPEG 颜色空间。最后,将 mf->field 设置为 V4L2_FIELD_NONE,表示没有场标志。
最后,函数返回 0,表示成功获取格式信息。

// 获取ov2640的格式
static int ov2640_g_fmt(struct v4l2_subdev *sd,
            struct v4l2_mbus_framefmt *mf)
{
    struct i2c_client  *client = v4l2_get_subdevdata(sd); // 获取i2c_client结构体
    struct ov2640_priv *priv = to_ov2640(client); // 获取ov2640_priv结构体

    if (!priv->win) { // 如果win指针为空
        u32 width = SVGA_WIDTH, height = SVGA_HEIGHT; // 定义width和height变量并初始化
        priv->win = ov2640_select_win(&width, &height); // 选择窗口大小
        priv->cfmt_code = MEDIA_BUS_FMT_UYVY8_2X8; // 初始化cfmt_code为UYVY8_2X8
    }

    mf->width    = priv->win->width; // 更新宽度
    mf->height    = priv->win->height; // 更新高度
    mf->code    = priv->cfmt_code; // 更新格式

    switch (mf->code) { // 根据格式选择颜色空间
    case MEDIA_BUS_FMT_RGB565_2X8_BE:
    case MEDIA_BUS_FMT_RGB565_2X8_LE:
        mf->colorspace = V4L2_COLORSPACE_SRGB; // 选择SRGB颜色空间
        break;
    default:
    case MEDIA_BUS_FMT_YUYV8_2X8:
    case MEDIA_BUS_FMT_UYVY8_2X8:
        mf->colorspace = V4L2_COLORSPACE_JPEG; // 选择JPEG颜色空间
    }
    mf->field    = V4L2_FIELD_NONE; // 设置field为NONE

    return 0; // 返回0
}

ov2640_s_fmt设置格式

这段代码是用于设置 OV2640 摄像头的格式的函数。它的作用是根据给定的 struct v4l2_mbus_framefmt 结构体 mf 中的格式字段,选择对应的颜色空间,并将格式和尺寸参数传递给 ov2640_set_params 函数进行设置。
函数首先通过 struct v4l2_subdev 结构体指针 sd 获取对应的 struct i2c_client 结构体指针 client。
接下来,根据 mf->code 的值,选择相应的颜色空间。如果 mf->code 是 MEDIA_BUS_FMT_RGB565_2X8_BE 或 MEDIA_BUS_FMT_RGB565_2X8_LE,则选择 SRGB 颜色空间;否则,将 mf->code 更新为 MEDIA_BUS_FMT_UYVY8_2X8,并选择 JPEG 颜色空间。
最后,调用 ov2640_set_params 函数,将 client、mf->width、mf->height 和 mf->code 作为参数传递给它,用于设置 OV2640 摄像头的参数。函数将 ov2640_set_params 的返回值作为自己的返回值,表示设置结果。
函数最终返回 ret,表示设置 OV2640 摄像头的结果

// 设置ov2640的格式
static int ov2640_s_fmt(struct v4l2_subdev *sd,
            struct v4l2_mbus_framefmt *mf)
{
    struct i2c_client *client = v4l2_get_subdevdata(sd); // 获取i2c_client结构体
    int ret;

    // 根据格式选择颜色空间
    switch (mf->code) {
    case MEDIA_BUS_FMT_RGB565_2X8_BE:
    case MEDIA_BUS_FMT_RGB565_2X8_LE:
        mf->colorspace = V4L2_COLORSPACE_SRGB; // 选择SRGB颜色空间
        break;
    default:
        mf->code = MEDIA_BUS_FMT_UYVY8_2X8;
    case MEDIA_BUS_FMT_YUYV8_2X8:
    case MEDIA_BUS_FMT_UYVY8_2X8:
        mf->colorspace = V4L2_COLORSPACE_JPEG; // 选择JPEG颜色空间
    }

    ret = ov2640_set_params(client, &mf->width, &mf->height, mf->code); // 设置ov2640的参数

    return ret; // 返回设置结果
}

这段代码是用于设置 OV2640 摄像头的参数的函数。它接受 struct i2c_client 结构体指针 client、u32 类型的指针 width 和 height,以及一个 u32 类型的参数 code。
函数首先通过 struct i2c_client 结构体指针 client 获取对应的 struct ov2640_priv 结构体指针 priv。
接下来,根据给定的 code 值选择相应的格式,并将选择的格式的寄存器列表赋值给 selected_cfmt_regs 指针。根据不同的 code 值,输出相应的调试信息。
然后,调用 ov2640_reset 函数重置硬件。
接着,使用默认数据初始化传感器,调用 ov2640_write_array 函数将默认数据写入摄像头寄存器。如果写入过程中出现错误,将跳转到 err 标签处进行错误处理。
然后,选择前导码,将窗口大小和格式的前导码写入摄像头寄存器。
接下来,根据选定的格式,调用 ov2640_write_array 函数将相应格式的寄存器列表写入摄像头寄存器。
最后,更新 priv->cfmt_code 的值为 code,将 width 和 height 更新为选定窗口的宽度和高度,并返回 0 表示设置成功。
如果在设置过程中出现错误,将输出相应的错误信息,重置硬件,将 priv->win 指针置为 NULL,并返回错误码。

// 设置ov2640的参数
static int ov2640_set_params(struct i2c_client *client, u32 *width, u32 *height,
                 u32 code)
{
    struct ov2640_priv       *priv = to_ov2640(client); // 获取ov2640_priv结构体
    const struct regval_list *selected_cfmt_regs; // 定义selected_cfmt_regs指针
    int ret;

    /* select win */ // 选择窗口大小
    priv->win = ov2640_select_win(width, height); // 选择窗口大小

    /* select format */ // 选择格式
    priv->cfmt_code = 0; // 初始化cfmt_code为0
    switch (code) { // 根据code选择格式
    case MEDIA_BUS_FMT_RGB565_2X8_BE:
        dev_dbg(&client->dev, "%s: Selected cfmt RGB565 BE", __func__); // 输出调试信息
        selected_cfmt_regs = ov2640_rgb565_be_regs; // 选择RGB565 BE格式
        break;
    case MEDIA_BUS_FMT_RGB565_2X8_LE:
        dev_dbg(&client->dev, "%s: Selected cfmt RGB565 LE", __func__); // 输出调试信息
        selected_cfmt_regs = ov2640_rgb565_le_regs; // 选择RGB565 LE格式
        break;
    case MEDIA_BUS_FMT_YUYV8_2X8:
        dev_dbg(&client->dev, "%s: Selected cfmt YUYV (YUV422)", __func__); // 输出调试信息
        selected_cfmt_regs = ov2640_yuyv_regs; // 选择YUYV格式
        break;
    default:
    case MEDIA_BUS_FMT_UYVY8_2X8:
        dev_dbg(&client->dev, "%s: Selected cfmt UYVY", __func__); // 输出调试信息
        selected_cfmt_regs = ov2640_uyvy_regs; // 选择UYVY格式
    }


    /* 重置硬件 */
    ov2640_reset(client);

    /* 使用默认数据初始化传感器 */
    dev_dbg(&client->dev, "%s: Init default", __func__);
    ret = ov2640_write_array(client, ov2640_init_regs); // 写入默认数据
    if (ret < 0)
        goto err;

    /* 选择前导码 */
    dev_dbg(&client->dev, "%s: Set size to %s", __func__, priv->win->name);
    ret = ov2640_write_array(client, ov2640_size_change_preamble_regs); // 写入前导码
    if (ret < 0)
        goto err;

    /* 设置窗口大小 */
    ret = ov2640_write_array(client, priv->win->regs); // 写入窗口大小
    if (ret < 0)
        goto err;

    /* 格式前导码 */
    dev_dbg(&client->dev, "%s: Set cfmt", __func__);
    ret = ov2640_write_array(client, ov2640_format_change_preamble_regs); // 写入格式前导码
    if (ret < 0)
        goto err;

    /* 设置格式 */
    ret = ov2640_write_array(client, selected_cfmt_regs); // 写入选择的格式
    if (ret < 0)
        goto err;

    priv->cfmt_code = code; // 更新cfmt_code
    *width = priv->win->width; // 更新宽度
    *height = priv->win->height; // 更新高度

    return 0; // 返回0

err:
    dev_err(&client->dev, "%s: Error %d", __func__, ret); // 输出错误信息
    ov2640_reset(client); // 重置硬件
    priv->win = NULL; // 将win指针置为NULL

    return ret; // 返回错误码
}

ov2640_try_fmt尝试格式

这段代码是用于尝试设置 OV2640 摄像头的格式的函数。它接受 struct v4l2_subdev 结构体指针 sd 和 struct v4l2_mbus_framefmt 结构体指针 mf。
函数首先调用 ov2640_select_win 函数选择合适的窗口大小,并更新 mf->width 和 mf->height 的值,但不存储窗口大小。
接下来,将 mf->field 设置为 V4L2_FIELD_NONE,表示字段顺序为无。
然后,根据给定的 mf->code 值选择相应的格式,并将选择的格式的颜色空间赋值给 mf->colorspace。根据不同的 mf->code 值,选择相应的颜色空间。
最后,返回 0 表示设置成功。
这个函数的作用是根据给定的格式代码 mf->code,尝试设置摄像头的格式,并更新颜色空间等相关信息。但它并不实际存储窗口大小,仅仅是进行格式的尝试。

static int ov2640_try_fmt(struct v4l2_subdev *sd,
              struct v4l2_mbus_framefmt *mf)
{
    // 选择合适的窗口大小,但不存储它
    ov2640_select_win(&mf->width, &mf->height);

    mf->field    = V4L2_FIELD_NONE;

    switch (mf->code) {
    case MEDIA_BUS_FMT_RGB565_2X8_BE:
    case MEDIA_BUS_FMT_RGB565_2X8_LE:
        mf->colorspace = V4L2_COLORSPACE_SRGB; // 选择SRGB颜色空间
        break;
    default:
        mf->code = MEDIA_BUS_FMT_UYVY8_2X8;
    case MEDIA_BUS_FMT_YUYV8_2X8:
    case MEDIA_BUS_FMT_UYVY8_2X8:
        mf->colorspace = V4L2_COLORSPACE_JPEG; // 选择JPEG颜色空间
    }

    return 0; // 返回0

}

ov2640_cropcap裁剪能力

这段代码用于获取 OV2640 摄像头的裁剪能力。它接受 struct v4l2_subdev 结构体指针 sd 和 struct v4l2_cropcap 结构体指针 a。
函数设置 a 中的字段值,表示裁剪能力的边界、默认矩形、类型和像素宽高比。
具体设置如下:
bounds 表示裁剪的边界,左边界为 0,上边界为 0,宽度为 UXGA_WIDTH,高度为 UXGA_HEIGHT。
defrect 表示默认矩形,与边界相同。
type 表示类型为 V4L2_BUF_TYPE_VIDEO_CAPTURE,表示视频捕获类型。
pixelaspect 表示像素宽高比,分子和分母都为 1,表示宽高比为 1:1。
最后,函数返回 0,表示获取裁剪能力成功。
这个函数的作用是获取 OV2640 摄像头的裁剪能力,将能力信息存储在 struct v4l2_cropcap 结构体中。

/ 获取裁剪能力
static int ov2640_cropcap(struct v4l2_subdev *sd, struct v4l2_cropcap *a)
{
    a->bounds.left            = 0; // 左边界为0
    a->bounds.top            = 0; // 上边界为0
    a->bounds.width            = UXGA_WIDTH; // 宽度为UXGA_WIDTH
    a->bounds.height        = UXGA_HEIGHT; // 高度为UXGA_HEIGHT
    a->defrect            = a->bounds; // 默认矩形为bounds
    a->type                = V4L2_BUF_TYPE_VIDEO_CAPTURE; // 类型为V4L2_BUF_TYPE_VIDEO_CAPTURE
    a->pixelaspect.numerator    = 1; // 像素宽高比的分子为1
    a->pixelaspect.denominator    = 1; // 像素宽高比的分母为1

    return 0; // 返回0
}

ov2640_g_crop获取裁剪

这段代码用于获取 OV2640 摄像头的裁剪信息。它接受 struct v4l2_subdev 结构体指针 sd 和 struct v4l2_crop 结构体指针 a。
函数设置 a 中的字段值,表示裁剪的矩形区域和类型。
具体设置如下:
c 表示裁剪的矩形区域,左边界为 0,上边界为 0,宽度为 UXGA_WIDTH,高度为 UXGA_HEIGHT。
type 表示类型为 V4L2_BUF_TYPE_VIDEO_CAPTURE,表示视频捕获类型。
最后,函数返回 0,表示获取裁剪信息成功。
这个函数的作用是获取 OV2640 摄像头的当前裁剪信息,将信息存储在 struct v4l2_crop 结构体中。

// 获取裁剪信息
static int ov2640_g_crop(struct v4l2_subdev *sd, struct v4l2_crop *a)
{
    a->c.left    = 0; // 左边界为0
    a->c.top    = 0; // 上边界为0
    a->c.width    = UXGA_WIDTH; // 宽度为UXGA_WIDTH
    a->c.height    = UXGA_HEIGHT; // 高度为UXGA_HEIGHT
    a->type        = V4L2_BUF_TYPE_VIDEO_CAPTURE; // 类型为V4L2_BUF_TYPE_VIDEO_CAPTURE

    return 0; // 返回0
}

ov2640_enum_fmt枚举格式

这段代码是用于枚举 OV2640 摄像头支持的格式的函数。它接受 struct v4l2_subdev 结构体指针 sd、无符号整数 index 和 u32 指针 code。
函数首先检查 index 是否超出了数组 ov2640_codes 的大小,如果超出则返回无效参数错误 -EINVAL。
然后,将 code 设置为数组 ov2640_codes 中对应索引位置的值,即获取对应索引处的格式代码。
最后,返回 0 表示枚举成功。
这个函数的作用是根据给定的索引 index,枚举摄像头支持的格式,并将对应索引处的格式代码存储在 code 中。

// 枚举ov2640的格式
static int ov2640_enum_fmt(struct v4l2_subdev *sd, unsigned int index,
               u32 *code)
{
    if (index >= ARRAY_SIZE(ov2640_codes)) // 如果索引超出数组大小
        return -EINVAL; // 返回无效参数错误

    *code = ov2640_codes[index]; // 将code设置为ov2640_codes数组中对应的值
return 0; // 返回0
}

ov2640_g_mbus_config获取总线配置

这段代码用于获取 OV2640 摄像头的总线配置信息。它接受 struct v4l2_subdev 结构体指针 sd 和 struct v4l2_mbus_config 结构体指针 cfg。
函数从 sd 中获取 i2c_client 结构体指针 client,然后通过 client 获取 soc_camera_subdev_desc 结构体指针 ssdd。
函数设置 cfg 中的字段值,表示总线配置的标志和类型。
具体设置如下:
flags 表示总线配置的标志,包括 V4L2_MBUS_PCLK_SAMPLE_RISING、V4L2_MBUS_MASTER、V4L2_MBUS_VSYNC_ACTIVE_HIGH、V4L2_MBUS_HSYNC_ACTIVE_HIGH 和 V4L2_MBUS_DATA_ACTIVE_HIGH。
type 表示总线配置的类型,设置为 V4L2_MBUS_PARALLEL。
最后,函数返回 0,表示获取总线配置信息成功。
这个函数的作用是获取 OV2640 摄像头的当前总线配置信息,将信息存储在 struct v4l2_mbus_config 结构体中。

// 获取总线配置
static int ov2640_g_mbus_config(struct v4l2_subdev *sd,
                struct v4l2_mbus_config *cfg)
{
    struct i2c_client *client = v4l2_get_subdevdata(sd); // 获取i2c_client
    struct soc_camera_subdev_desc *ssdd = soc_camera_i2c_to_desc(client); // 获取soc_camera_subdev_desc

    cfg->flags = V4L2_MBUS_PCLK_SAMPLE_RISING | V4L2_MBUS_MASTER | // 设置cfg的flags
        V4L2_MBUS_VSYNC_ACTIVE_HIGH | V4L2_MBUS_HSYNC_ACTIVE_HIGH |
        V4L2_MBUS_DATA_ACTIVE_HIGH;
    cfg->type = V4L2_MBUS_PARALLEL; // 设置cfg的type
    cfg->flags = soc_camera_apply_board_flags(ssdd, cfg); // 设置cfg的flags


	return 0; // 返回0
}
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/558304.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySql-高级(分库分表问题简析) 学习笔记

文章目录 1. 为什么要分库分表&#xff1f;2. 用过哪些分库分表中间件&#xff1f;不同的分库分表中间件都有什么优点和缺点&#xff1f;3. 你们具体是如何对数据库如何进行垂直拆分或水平拆分的&#xff1f;4. 分库分表时&#xff0c;数据迁移方案5. 如何设计可以动态扩容缩容…

kafka本地测试消息

一安装JDK 二zookeeper安装 Apache ZooKeeper conf下修改cfg文件名 为zoo.cfg 打开该文件编辑 配置环境变量 右击电脑--属性--高级系统设置--选择环境变量 新建系统变量 变量名&#xff1a;ZOOKEEPER_HOME 变量值为zookeeper的路径 然后编辑环境变量Path 新增%ZOOKEEPER…

关于信号包络检测

说明 最近在调研学习数字滤波的东西&#xff0c;看到关于信号包络检测这样一个知识点&#xff0c;感觉很有意思&#xff0c;于是想着简单捋清楚并写篇博文装载起来总结一下。本博文与车载毫米波雷达的信号和数据处理无关&#xff0c;所以本文不会放到车载毫米波雷达系列专题规划…

第十二章 Productions最佳实践 - 命名约定

文章目录 第十二章 Productions最佳实践 - 命名约定命名约定业务服务路由进程路由规则集业务操作数据转换 自定义架构类别 第十二章 Productions最佳实践 - 命名约定 命名约定 本主题解释命名约定的重要性并提供示例。 通常&#xff0c;将逐步开发产品&#xff0c;一次开发一…

CAD数据库下包含的表记录

AutoCAD数据库(AcDb)是一些存储在数据库中的对象的集合。 数据词典&#xff0c;符号表是存储数据库对象的容器&#xff08;Container Object&#xff09;&#xff0c;用于组织和管理数据库对象。这两种容器对象都有与之相关的符号名&#xff0c;用字符来表示。 符号表是固定的…

chatgpt赋能Python-python_ipython

Python和IPython&#xff1a;SEO编程最佳实践 Python 是一种高级动态编程语言&#xff0c;被许多人用于开发各种应用程序和脚本。它是一个易于学习和使用的语言&#xff0c;提供了一些流行的框架和库来减少开发时间。另一方面&#xff0c;IPython 是Python的交互式命令行界面和…

面试:Babel 的编译过程

Babel 是一个 JavaScript 编译器&#xff0c;是一个工具链&#xff0c;主要用于将采用 ECMAScript 2015 语法编写的代码转换为向后兼容的 JavaScript 语法&#xff0c;以便能够运行在当前和旧版本的浏览器或其他环境中。 Babel 本质上就是在操作 AST 来完成代码的转译。AST是抽…

Ubuntu GitLab服务器git-data中tmp_pack_xxx文件占满磁盘

Ubuntu GitLab服务器git-data中tmp_pack_xxx文件占满磁盘 目录 Ubuntu GitLab服务器git-data中tmp_pack_xxx文件占满磁盘一、问题发现二、查找原因三、解决方法 服务器版本&#xff1a; cat /proc/version&#xff1a;Linux version 4.15.0-142-generic (builddlgw01-amd64-039…

Spring Initializr方式构建Spring Boot项目

文章目录 一&#xff0c;创建Spring Boot项目二&#xff0c;创建控制器三&#xff0c;运行入口类四&#xff0c;访问Web页面五&#xff0c;修改访问映射路径六&#xff0c;利用控制器返回页面1、添加thymeleaf依赖2、准备图片作为静态资源3、创建样式表作为静态资源4、创建首页…

最强Mock 工具,没人反对吧?

背景 在开发过程中&#xff0c;由于后端与前端并行开发&#xff0c;或者前端需要等待后台开发&#xff0c;难以保证对接效率&#xff0c;同时即使用开发好的 API 对接&#xff0c;也有可能一个 API 不通就阻塞了整个软件的对接工作。同时对软件的敏感度也很高&#xff0c;一不…

微软推出 Hierarchical Transformer 实现更高准确率的语音评测

对于语言学习者来说&#xff0c;练习发音并获得及时准确的反馈&#xff0c;是提高口语水平的重要环节。多年来&#xff0c;微软一直深耕基于 Azure 认知服务的语音功能&#xff0c;不断优化语音评测[1]功能的底层技术&#xff0c;从准确率、流畅度、完整性和语音语调等方面&…

Cadence+SPB16.2入门教程(下)

弹出Create Net Class对话框,如图4.21所示。输入名称DDR_DATA,点击OK关闭对话框。 建立DDR_ADDR的过程也一样,同时选中网络XM1ADDR0-XM1ADDR15,XM1CASN、XM1CKE0、XM1CSN0、XM1RASN、XM1WEN后右键Create->Net Class。其它就不重复了。 然后将上一步建立的两个电气规则D…

chatgpt赋能Python-python_ijust

简介 Python ijust&#xff0c;是一款非常优秀的Python代码编辑器&#xff0c;它支持多种语言编程、自动补全、代码高亮、代码片段库和多种主题等众多特性。Python ijust 可以在Windows、macOS、Linux上运行&#xff0c;而且界面简洁、易用。 主要功能 代码高亮&#xff1a;P…

【MySQL新手到通关】第三章 基本的SELECT语句

文章目录 1. SQL 概述1.1 SQL 背景知识 1.2 SQL 分类2. SQL语言的规则与规范2.1 基本规则2.2 注释2.3 数据导入指令 3. 基本的SELECT语句3.1 SELECT ... FROM3.2 列的别名3.3 去除重复行3.4 空值参与运算3.5 着重号 4. 显示表结构5. 基本的过滤数据 1. SQL 概述 1.1 SQL 背景知…

计讯物联打造医疗设备远程质检“新神器”TG453,引领医疗设备数字化浪潮

方案背景 基于物联网的普及与推广&#xff0c;物联网技术在医疗行业得到更广泛的应用。在医院的日常诊疗工作开展中&#xff0c;CT、呼吸机、监护仪、注射泵、核磁共振、DR系统、工频X光机等医疗设备稳定无故障地运行对于医院、患者而言具有重要影响。医疗设备在长期使用过程中…

讨论:为什么越来越多的企业开始搭建属于自己的知识库?

随着信息技术的发展&#xff0c;人们可以在互联网上随时随地获取各种信息。企业作为一个独立的组织体系&#xff0c;其运营和管理需要依赖于大量的知识和信息。因此&#xff0c;建立一个属于自己的知识库&#xff0c;可以帮助企业更好地管理和共享知识&#xff0c;提高员工的工…

VS Code 大量 Java 新功能来袭!

大家好&#xff0c;欢迎来到 Visual Studio Code Java 的 4 月更新&#xff01;在此博客中&#xff0c;我们将带来大量基础用户体验更新&#xff0c;其中包括调试功能改进、Maven 插件中的配置文件支持、全新 Java Project Explorer 的用户界面和 Spring Boot 项目的可视化增强…

2.shell脚本基本操作及案例

本文介绍了shell脚本的基本建立过程&#xff0c;并举了4个案例。关键是例3的shell脚本检测局域网ip地址机器是否宕机&#xff0c;例4的shell脚本获取本机ip地址 一、第一个shell脚本 1、定义解释器 #&#xff01;/bin/bash echo "hello world" #! 是一个约定的标记…

[玩游戏想道理]底层能力提升

继续金铲铲中想道理&#xff1b; overview 很多熟悉的情况是调用记忆即可&#xff0c;但是新的情况则需要使用底层能力&#xff0c;包括不限于做事的方式倾向&#xff0c;对事物的深刻理解等等&#xff1b; 既有事情更多在调用和打磨记忆&#xff0c;新的事物更多调用和打磨底…

『C++』C++的IO流详解

「前言」文章是关于C的IO流 「归属专栏」C嘎嘎 「笔者」枫叶先生(fy) 「座右铭」前行路上修真我 「枫叶先生有点文青病」 「每篇一句」 就像山看水&#xff0c;水流山还在&#xff0c; 喜欢之人&#xff0c;只管远去&#xff0c; 我只管喜欢。 ——烽火戏诸侯《剑来》 目录 一…