C++的继承

news2025/3/1 4:19:11

继承

  • 1.继承的概念及定义
    • 1.1继承的概念
    • 1.2 继承定义
      • 1.2.1定义格式
      • 1.2.2继承关系和访问限定符
      • 1.2.3继承基类成员访问方式的变化
  • 2.基类和派生类对象赋值转换
  • 3.继承中的作用域
  • 4.派生类的默认成员函数
  • 5.继承与友元
  • 6. 继承与静态成员
  • 7.复杂的菱形继承及菱形虚拟继承

1.继承的概念及定义

1.1继承的概念

继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段,它允许程序员在保持原有类特性的基础上进行扩展,增加功能,这样产生新的类,称派生类。继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,继承是类设计层次的复用
在这里插入图片描述

1.2 继承定义

1.2.1定义格式

下面我们看到Person是父类,也称作基类。Student是子类,也称作派生类。
在这里插入图片描述

1.2.2继承关系和访问限定符

在这里插入图片描述
在这里插入图片描述

1.2.3继承基类成员访问方式的变化

在这里插入图片描述
总结:

  1. 基类private成员在派生类中无论以什么方式继承都是不可见的。这里的不可见是指基类的私有成员还是被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面都不能去访问它。
  2. 基类private成员在派生类中是不能被访问,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就定义为protected。可以看出保护成员限定符是因继承才出现的。
  3. 实际上面的表格我们进行一下总结会发现,基类的私有成员在子类都是不可见。基类的其他成员在子类的访问方式 == Min(成员在基类的访问限定符,继承方式),public > protected> private。
  4. 使用关键字class时默认的继承方式是private,使用struct时默认的继承方式是public,不过
    最好显示的写出继承方式。
  5. 在实际运用中一般使用都是public继承,几乎很少使用protetced/private继承,也不提倡
    使用protetced/private继承,因为protetced/private继承下来的成员都只能在派生类的类里
    面使用,实际中扩展维护性不强。

2.基类和派生类对象赋值转换

  • 派生类对象 可以赋值给 基类的对象 / 基类的指针 / 基类的引用。这里有个形象的说法叫切片或者切割。寓意把派生类中父类那部分切来赋值过去。
  • 基类对象不能赋值给派生类对象
  • 基类的指针或者引用可以通过强制类型转换赋值给派生类的指针或者引用。但是必须是基类的指针是指向派生类对象时才是安全的。这里基类如果是多态类型,可以使用RTTI(Run-Time Type Information)的dynamic_cast 来进行识别后进行安全转换。

在这里插入图片描述
在这里插入图片描述

3.继承中的作用域

  1. 在继承体系中基类派生类都有独立的作用域
  2. 子类和父类中有同名成员,子类成员将屏蔽父类对同名成员的直接访问,这种情况叫隐藏,也叫重定义。(在子类成员函数中,可以使用 基类::基类成员 显示访问
  3. 需要注意的是如果是成员函数的隐藏,只需要函数名相同就构成隐藏
  4. 注意在实际中在继承体系里面最好不要定义同名的成员

在这里插入图片描述
在这里插入图片描述

4.派生类的默认成员函数

6个默认成员函数,“默认”的意思就是指我们不写,编译器会变我们自动生成一个,那么在派生类中,这几个成员函数是如何生成的呢?

  1. 派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认的构造函数,则必须在派生类构造函数的初始化列表阶段显示调用
  2. 派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化
  3. 派生类的operator=必须要调用基类的operator=完成基类的复制
  4. 派生类的析构函数会在被调用完成后自动调用基类的析构函数清理基类成员。因为这样才能保证派生类对象先清理派生类成员再清理基类成员的顺序。
  5. 派生类对象初始化调用基类构造再调派生类构造。
  6. 派生类对象析构清理先调用派生类析构再调类的析构。
  7. 因为后续一些场景析构函数需要构成重写,重写的条件之一是函数名相同(这个我们后面会讲解)。那么编译器会对析构函数名进行特殊处理,处理成destrutor(),所以父类析构函数不加virtual的情况下,子类析构函数和父类析构函数构成隐藏关系。

在这里插入图片描述
在这里插入图片描述


class Person
{
public:
	Person(const char* name = "peter")
		: _name(name)
	{
		cout << "Person()" << endl;
	}

	Person(const Person& p)
		: _name(p._name)
	{
		cout << "Person(const Person& p)" << endl;
	}

	Person& operator=(const Person& p)
	{
		cout << "Person operator=(const Person& p)" << endl;
		if (this != &p)
			_name = p._name;

		return *this;
	}

	~Person()
	{
		cout << "~Person()" << endl;
	}
protected:
	string _name; // 姓名
};
class Student : public Person
{
public:
	Student(const char* name, int num)
		: Person(name)
		, _num(num)
	{
		cout << "Student()" << endl;
	}
	Student(const Student& s)
		: Person(s)
		, _num(s._num)
	{
		cout << "Student(const Student& s)" << endl;
	}
	Student& operator = (const Student& s)
	{
		cout << "Student& operator= (const Student& s)" << endl;
		if (this != &s)
		{
			Person::operator =(s);
			_num = s._num;
		}
		return *this;
	}
	~Student()
	{
		cout << "~Student()" << endl;
	}
protected:
	int _num; //学号
};
void Test()
{
	Student s1("jack", 18);
	Student s2(s1);
	Student s3("rose", 17);
	s1 = s3;
}


5.继承与友元

友元关系不能继承,也就是说基类友元不能访问子类私有和保护成员
在这里插入图片描述

6. 继承与静态成员

基类定义了static静态成员,则整个继承体系里面只有一个这样的成员。无论派生出多少个子类,都只有一个static成员实例 。


class Person
{
public:
	Person() { ++_count; }
protected:
	string _name; // 姓名
public:
	static int _count; // 统计人的个数。
};
int Person::_count = 0;
class Student : public Person
{
protected:
	int _stuNum; // 学号
};
class Graduate : public Student
{
protected:
	string _seminarCourse; // 研究科目
};
void TestPerson()
{
	Student s1;
	Student s2;
	Student s3;
	Graduate s4;
	cout << " 人数 :" << Person::_count << endl;
	Student::_count = 0;
	cout << " 人数 :" << Person::_count << endl;
}
int  main()
{
	TestPerson();
	return 0;
}

7.复杂的菱形继承及菱形虚拟继承

单继承:一个子类只有一个直接父类时称这个继承关系为单继承
在这里插入图片描述
多继承:一个子类有两个或以上直接父类时称这个继承关系为多继承
在这里插入图片描述
菱形继承:菱形继承是多继承的一种特殊情况。
在这里插入图片描述
菱形继承的问题:从下面的对象成员模型构造,可以看出菱形继承有数据冗余和二义性的问题。在Assistant的对象中Person成员会有两份。
在这里插入图片描述
在这里插入图片描述
虚拟继承可以解决菱形继承的二义性和数据冗余的问题。如上面的继承关系,在Student和Teacher的继承Person时使用虚拟继承,即可解决问题。需要注意的是,虚拟继承不要在其他地方去使用。关键字:virtual
在这里插入图片描述
虚拟继承解决数据冗余和二义性的原理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/556918.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

舒适交友 - 什么样的婚姻最舒服 稳态婚姻

人人都是心理学家,mbti等_个人渣记录仅为自己搜索用的博客-CSDN博客 人生两大目标: 生产力提升 让身边的人快乐. 激动 兴奋 不一定 舒适 开心 幸福 安全感 平静 宁静 祥和 婚姻 稳态 041 探秘“情绪”——如何确定只有六种基本情绪&#xff1f; - 知乎 ( 6种原始情绪&am…

chatgpt赋能Python-python_dilate

Python中的dilate操作&#xff1a;了解该操作及其应用 在计算机视觉领域&#xff0c;dilate操作是一种常用的图像处理技术。在Python中&#xff0c;我们可以使用OpenCV库来实现dilate操作。本文将介绍dilate操作的基本概念&#xff0c;讨论其应用及如何使用Python进行实现。 …

C++爱好者的自我修养(13.1):一维数组——简介,声明,初始化(赋值)

文章目录 1.什么是数组&#xff1f;2.数组的声明2.1格式2.2特别注意&#xff1a;有效下标值的重要性 3.数组的初始化&#xff08;赋值&#xff09;3.1格式3.2 C11新增的初始化方法规则功能3.2.1 等号的省略3.2.2 当大括号内无东西3.2.3 禁止缩窄转换 1.什么是数组&#xff1f; …

Kafka实时数据同步

目录 1 概述 2 捕获Oracle数据到Kafka 2.1 数据捕获设置 2.2 数据发布任务设置 2.3 捕获到发布数据流映射 2.4 查看任务执行日志 3 订阅Kafka数据到ClickHouse 3.1 数据订阅设置 3.2 数据加载设置 3.3 订阅到加载数据流映射 3.4 查看任务执行日志 4 校验数据一致性 …

GEE:GEDI数据提取值到矢量区域和点

作者:CSDN @ _养乐多_ 本文将介绍GEDI数据集从GEE上下载到本地,并将每一个激光点的值提取为一个矢量区域,并提取值到矢量区域的方法。 文章目录 一、GEDI数据下载二、GEDI数据栅格矢量化三、提取值到区域四、提取栅格值到点五、空间插值一、GEDI数据下载 GEDI数据下载链接:…

80个Python练手小项目;AI开发者的总结与反思;B站免费Stable Diffusion视频教程;五问ChatGPT+医学影像 | ShowMeAI日报

&#x1f440;日报&周刊合集 | &#x1f3a1;生产力工具与行业应用大全 | &#x1f9e1; 点赞关注评论拜托啦&#xff01; &#x1f916; 『美团大模型已秘密研发数月』在仅剩一年的窗口期里努力奔跑 5月18日下午&#xff0c;美团内部召开大模型技术分享会&#xff0c;美团…

【深度学习】- 作业5: Didi交通场景-车辆预测

课程链接: 清华大学驭风计划 代码仓库&#xff1a;Victor94-king/MachineLearning: MachineLearning basic introduction (github.com) 驭风计划是由清华大学老师教授的&#xff0c;其分为四门课&#xff0c;包括: 机器学习(张敏教授) &#xff0c; 深度学习(胡晓林教授), 计算…

ONVIF协议了解

第一部分:ONVIF理论基础 一&#xff0e; 为什么要用ONVIF协议&#xff1a; IPC厂商主流的遵循的是RTSP协议进行推流&#xff0c;那么RTSP最重要的就是RTSP的URL地址。但是各个厂商的URL地址格式都不一样&#xff0c;所以就诞生了一个标注协议—ONVIF。ONVIF协议的出现&#x…

开源赋能 普惠未来|QUICKPOOL诚邀您参与2023开放原子全球开源峰会

QUICKPOOL算力调度系统的诞生和发展&#xff0c;为广大的算力领域从业者和技术开发者&#xff0c;提供了一条中国技术路线&#xff0c;并与IBM LSF、SLURM、PBS、SGE等产品&#xff0c;共同助力全球算力发展。QUICKPOOL算力调度系统成熟、稳定&#xff0c;具备“超算&智算”…

MATLAB 搜索某一点的K邻近点(12)

MATLAB 搜索某一点的K邻近点(12) 前言一、算法介绍1.1 :无序点云的K邻近点搜索1.2 :有序点云的K邻近点搜索二、具体实现示例2.1 算法一 (含详细注释)2.2 算法二 (含详细注释)前言 在点云处理中,最基本的算法之一就是搜索某一点的近邻点(1个最近或多个邻近),这在重…

MySQL数据库学习笔记(八)实验课五之数据库系统设计

一上来就实验课五了&#xff0c;实验课四呢&#xff1f;实验课四的内容是添加索引&#xff0c;差不多就是那样。 这次实验课的内容感觉就有点硬核了&#xff0c;数据库系统设计。 重点&#xff1a; 记录下我在实验里面遇到的一些问题 1&#xff0c;E-R图绘制 我是用drawio绘…

Rancher1.6高可用架构设计与实现思路

文章目录 [toc] 1.架构图2.建立数据导入脚本2.1 单机运行命令2.2 导出单机容器中的数据库文件2.3 dump文件 3.启动命令4.总结 1.架构图 架构说明&#xff1a;本文重点是rancher1.6.17的多实例共用一个数据库持久化数据&#xff0c;对于前置的负载均衡和mysql5.7的高可用不做过多…

linux 框架学习法

学习视频&#xff1a;【北京迅为】再谈Linux学习方法-框架学习法 学习UBOOT 框架学习法 linux基础框架 文件系统框架 bootloader是上电后执行的第一个程序bootloader会引导linux内核&#xff0c;会执行zimagelinux内核会挂载文件系统&#xff0c;文件系统可大可小&#xff0c;…

Go语言gin框架项目:按模板导出excel并在网页端下载,并将此接口完成swagger的配置

1.需求 甲方的需求是以这种格式导出一个开工通知单 前端页面是这个样子&#xff1a; 前端勾选一部分部室&#xff0c;后端根据勾选的这些部室名称进行查询&#xff0c;将查询到的部室主任名字填充到表格对应的位置中&#xff0c;另外将前端传过来的信息都填充到表格的指定位置…

4.1 一级存储结构

本节介绍 GPU 上的一级缓存结构&#xff0c;重点介绍统一的 L1 数据缓存和暂存器“共享内存”&#xff0c;以及它们如何与计算核心交互。 我们还简要讨论了 L1 纹理缓存的典型微架构。 我们包括对纹理缓存的讨论&#xff0c;虽然它在 GPU 计算应用程序中的使用有限&#xff0c;…

前端GC垃圾回收机制

js中的管理是自动的&#xff0c;对象不再被引用时就是垃圾&#xff0c;不能从根上访问时也是垃圾。 能够访问到的对象就是可达对象&#xff08;引用&#xff0c;作用域链&#xff09;&#xff0c;可达的标准就是从根触发是否能够被找到&#xff0c;根可以理解为是全局变量。 …

【机器学习】 - 作业7: 某闯关类手游用户流失预测

课程链接: 清华大学驭风计划 代码仓库&#xff1a;Victor94-king/MachineLearning: MachineLearning basic introduction (github.com) 驭风计划是由清华大学老师教授的&#xff0c;其分为四门课&#xff0c;包括: 机器学习(张敏教授) &#xff0c; 深度学习(胡晓林教授), 计算…

并发和线程

并行和并发 1.并行跟并发有什么区别&#xff1f; 从操作系统的角度来看&#xff0c;线程是CPU分配的最小单位。 并行就是同一时刻&#xff0c;两个线程都在执行。这就要求有两个CPU去分别执行两个线程。 并发就是同一时刻&#xff0c;只有一个执行&#xff0c;但是一个时间段…

详解HTTPS加密过程

目录 前言 HTTPS是什么 HTTPS的工作过程 引入对称加密 引入非对称加密 引入证书 总结 前言 对于HTTP上篇文章已经做了详细的解释了。众所周知&#xff0c;HTTPS要比HTTP要安全&#xff0c;但是为什么HTTPS要比HTTP安全呢&#xff1f; 这篇文章主要研究HTTPS的加密机制…

操作系统-X18 linux日志审计

Linux日志审计 在unix/类unix&#xff08;Linux&#xff09;系统中&#xff0c;日志是内核&#xff08;内存&#xff09;的一部分。 用于记录系统、程序运行中发生的各种事件 通过阅读日志&#xff0c;有助于诊断和解决系统故障 日志文件的分类 ①内核及系统日志 由系统sysl…