代码随想录刷题day52 300.最长递增子序列;674. 最长连续递增序列;718. 最长重复子数组
二维dp的初次应用,关于子序列的一系列问题。
300.最长递增子序列
300. 最长递增子序列 - 力扣(Leetcode)
子序列的一个入门题目。要点是两层遍历以及明确起始位置。
思路
最长上升子序列是动规的经典题目,这里dp[i]是可以根据dp[j] (j < i)推导出来的,那么依然用动规五部曲来分析详细一波:
- dp[i]的定义
dp[i]表示i之前包括i的以nums[i]结尾最长上升子序列的长度
- 状态转移方程
位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值。
- dp[i]的初始化
每一个i,对应的dp[i](即最长上升子序列)起始大小至少都是1.
- 确定遍历顺序
dp[i] 是有0到i-1各个位置的最长升序子序列 推导而来,那么遍历i一定是从前向后遍历。
j其实就是0到i-1,遍历i的循环在外层,遍历j则在内层,代码如下:
for (int i = 1; i < nums.size(); i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > result) result = dp[i]; // 取长的子序列
}
- 举例推导dp数组
输入:[0,1,0,3,2],dp数组的变化如下:
以上五部分析完毕,C++代码如下:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
vector<int> dp(nums.size(), 1);
int result = 0;
for (int i = 1; i < nums.size(); i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > result) result = dp[i]; // 取长的子序列
}
return result;
}
};
674. 最长连续递增序列
674. 最长连续递增序列 - 力扣(Leetcode)
其实贪心的方法反而更好理解一些。对于dp的过程来说,我觉得也有点像贪心。
思路
本题要求的是最长连续递增序列
动态规划
动规五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义
dp[i]:以下标i为结尾的数组的连续递增的子序列长度为dp[i]。
注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置。
- 确定递推公式
如果 nums[i + 1] > nums[i],那么以 i+1 为结尾的数组的连续递增的子序列长度 一定等于 以i为结尾的数组的连续递增的子序列长度 + 1 。
即:dp[i + 1] = dp[i] + 1;
因为本题要求连续递增子序列,所以就必要比较nums[i + 1]与nums[i],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。
既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i + 1] 和 nums[i]。
- dp数组如何初始化
以下标i为结尾的数组的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。
所以dp[i]应该初始1;
- 确定遍历顺序
从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。
本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:
for (int i = 0; i < nums.size() - 1; i++) {
if (nums[i + 1] > nums[i]) { // 连续记录
dp[i + 1] = dp[i] + 1; // 递推公式
}
}
- 举例推导dp数组
已输入nums = [1,3,5,4,7]为例,dp数组状态如下:
注意这里要取dp[i]里的最大值,所以dp[2]才是结果!
以上分析完毕,C++代码如下:
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
if (nums.size() == 0) return 0;
int result = 1;
vector<int> dp(nums.size() ,1);
for (int i = 0; i < nums.size() - 1; i++) {
if (nums[i + 1] > nums[i]) { // 连续记录
dp[i + 1] = dp[i] + 1;
}
if (dp[i + 1] > result) result = dp[i + 1];
}
return result;
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(n)
贪心
这道题目也可以用贪心来做,也就是遇到nums[i + 1] > nums[i]的情况,count就++,否则count为1,记录count的最大值就可以了。
代码如下:
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
if (nums.size() == 0) return 0;
int result = 1; // 连续子序列最少也是1
int count = 1;
for (int i = 0; i < nums.size() - 1; i++) {
if (nums[i + 1] > nums[i]) { // 连续记录
count++;
} else { // 不连续,count从头开始
count = 1;
}
if (count > result) result = count;
}
return result;
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(1)
总结
要联动起来,才能理解递增子序列怎么求,递增连续子序列又要怎么求。
概括来说:不连续递增子序列的跟前0-i 个状态有关,连续递增的子序列只跟前一个状态有关
718. 最长重复子数组
718. 最长重复子数组 - 力扣(Leetcode)
二维dp数组的使用。滚动数组优化的方法没理解,可能和背包问题一样,如果从前向后的话会有覆盖的问题,所以从后向前递推。
思路
注意题目中说的子数组,其实就是连续子序列。这种问题动规最拿手,动规五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义
dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )
此时细心的同学应该发现,那dp[0][0]是什么含义呢?总不能是以下标-1为结尾的A数组吧。
其实dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始。
那有同学问了,我就定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?
行倒是行! 但实现起来就麻烦一点,大家看下面的dp数组状态图就明白了。
- 确定递推公式
根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。
即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;
根据递推公式可以看出,遍历i 和 j 要从1开始!
- dp数组如何初始化
根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!
但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;
所以dp[i][0] 和dp[0][j]初始化为0。
举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。
- 确定遍历顺序
外层for循环遍历A,内层for循环遍历B。
那又有同学问了,外层for循环遍历B,内层for循环遍历A。不行么?
也行,一样的,我这里就用外层for循环遍历A,内层for循环遍历B了。
同时题目要求长度最长的子数组的长度。所以在遍历的时候顺便把dp[i][j]的最大值记录下来。
代码如下:
for (int i = 1; i <= A.size(); i++) {
for (int j = 1; j <= B.size(); j++) {
if (A[i - 1] == B[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
if (dp[i][j] > result) result = dp[i][j];
}
}
- 举例推导dp数组
拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:
以上五部曲分析完毕,C++代码如下:
class Solution {
public:
int findLength(vector<int>& A, vector<int>& B) {
vector<vector<int>> dp (A.size() + 1, vector<int>(B.size() + 1, 0));
int result = 0;
for (int i = 1; i <= A.size(); i++) {
for (int j = 1; j <= B.size(); j++) {
if (A[i - 1] == B[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
if (dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
};
- 时间复杂度: O ( n × m ) O(n × m) O(n×m),n 为A长度,m为B长度
- 空间复杂度: O ( n × m ) O(n × m) O(n×m)
滚动数组
在如下图中:
我们可以看出dp[i][j]都是由dp[i - 1][j - 1]推出。那么压缩为一维数组,也就是dp[j]都是由dp[j - 1]推出。
也就是相当于可以把上一层dp[i - 1][j]拷贝到下一层dp[i][j]来继续用。
此时遍历B数组的时候,就要从后向前遍历,这样避免重复覆盖。
class Solution {
public:
int findLength(vector<int>& A, vector<int>& B) {
vector<int> dp(vector<int>(B.size() + 1, 0));
int result = 0;
for (int i = 1; i <= A.size(); i++) {
for (int j = B.size(); j > 0; j--) {
if (A[i - 1] == B[j - 1]) {
dp[j] = dp[j - 1] + 1;
} else dp[j] = 0; // 注意这里不相等的时候要有赋0的操作
if (dp[j] > result) result = dp[j];
}
}
return result;
}
};
- 时间复杂度: O ( n × m ) O(n × m) O(n×m),n 为A长度,m为B长度
- 空间复杂度: O ( m ) O(m) O(m)