Hasse diagram

news2025/1/11 19:42:53

In order theory, a Hasse diagram (/ˈhæsə/; German: [ˈhasə]) is a type of mathematical diagram used to represent a finite partially ordered set, in the form of a drawing of its transitive reduction. Concretely, for a partially ordered set (S, ≤) one represents each element of S as a vertex in the plane and draws a line segment or curve that goes upward from x to y whenever y ≠ x and y covers x (that is, whenever x ≤ y and there is no z such that x ≤ z ≤ y). These curves may cross each other but must not touch any vertices other than their endpoints. Such a diagram, with labeled vertices, uniquely determines its partial order.

The diagrams are named after Helmut Hasse (1898–1979); according to Garrett Birkhoff (1948), they are so called because of the effective use Hasse made of them. However, Hasse was not the first to use these diagrams. One example that predates Hasse can be found in Henri Gustav Vogt (1895). Although Hasse diagrams were originally devised as a technique for making drawings of partially ordered sets by hand, they have more recently been created automatically using graph drawing techniques.[1]

The phrase “Hasse diagram” may also refer to the transitive reduction as an abstract directed acyclic graph, independently of any drawing of that graph, but this usage is eschewed here.[2][3][4]

在这里插入图片描述

The power set of a 2-element set ordered by inclusion

Contents

  • 1 Diagram design
  • 2 Upward planarity
  • 3 UML notation

1 Diagram design

Although Hasse diagrams are simple as well as intuitive tools for dealing with finite posets, it turns out to be rather difficult to draw “good” diagrams. The reason is that there will in general be many possible ways to draw a Hasse diagram for a given poset. The simple technique of just starting with the minimal elements of an order and then drawing greater elements incrementally often produces quite poor results: symmetries and internal structure of the order are easily lost.

The following example demonstrates the issue. Consider the power set of a 4-element set ordered by inclusion {\displaystyle \subseteq }\subseteq . Below are four different Hasse diagrams for this partial order. Each subset has a node labelled with a binary encoding that shows whether a certain element is in the subset (1) or not (0):

在这里插入图片描述
The first diagram makes clear that the power set is a graded poset. The second diagram has the same graded structure, but by making some edges longer than others, it emphasizes that the 4-dimensional cube is a combinatorial union of two 3-dimensional cubes, and that a tetrahedron (abstract 3-polytope) likewise merges two triangles (abstract 2-polytopes). The third diagram shows some of the internal symmetry of the structure. In the fourth diagram the vertices are arranged like the elements of a 4×4 matrix.

2 Upward planarity

Main article: Upward planar drawing

If a partial order can be drawn as a Hasse diagram in which no two edges cross, its covering graph is said to be upward planar. A number of results on upward planarity and on crossing-free Hasse diagram construction are known:

If the partial order to be drawn is a lattice, then it can be drawn without crossings if and only if it has order dimension at most two.[5] In this case, a non-crossing drawing may be found by deriving Cartesian coordinates for the elements from their positions in the two linear orders realizing the order dimension, and then rotating the drawing counterclockwise by a 45-degree angle.
If the partial order has at most one minimal element, or it has at most one maximal element, then it may be tested in linear time whether it has a non-crossing Hasse diagram.[6]
It is NP-complete to determine whether a partial order with multiple sources and sinks can be drawn as a crossing-free Hasse diagram.[7] However, finding a crossing-free Hasse diagram is fixed-parameter tractable when parametrized by the number of articulation points and triconnected components of the transitive reduction of the partial order.[8]
If the y-coordinates of the elements of a partial order are specified, then a crossing-free Hasse diagram respecting those coordinate assignments can be found in linear time, if such a diagram exists.[9] In particular, if the input poset is a graded poset, it is possible to determine in linear time whether there is a crossing-free Hasse diagram in which the height of each vertex is proportional to its rank.

在这里插入图片描述

This Hasse diagram of the lattice of subgroups of the dihedral group Dih4 has no crossing edges.

3 UML notation

The standard diagram for a chain of inclusions is the UML class, connecting sets by the inheritance relation. The illustration shows a nested set collection, C:

B = {♠, ♥, ♦, ♣}; B1 = {♠, ♥}; B2 = {♦, ♣}; B3 = {♣};
C = {B, B1, B2, B3}.

在这里插入图片描述

Expressing the example by standard UML inheritance connectors. Each set is a distinct object (standard UML boxes are rectangular).

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/55085.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023最新SSM计算机毕业设计选题大全(附源码+LW)之java高校学生宿舍管理信息系统3x4rz

做毕业设计一定要选好题目。毕设想简单,其实很简单。这里给几点建议: 1:首先,学会收集整理,年年专业都一样,岁岁毕业人不同。很多人在做毕业设计的时候,都犯了一个错误,那就是不借鉴…

記錄下用google colab 进行GPU(TPU)训练

文章目录温馨提示打开网站上传资源下载资源到google colab温馨提示 需要科学上网,没有的话可以点这个 https://shandianpro.com/#/register?codewCXwkCOU下个clashx进行 挂载 https://download.csdn.net/download/monk96/87231589 配置自行百度 打开网站 google…

Win11系统提示backgroundtaskhost.exe系统错误解决方法

Win11系统提示backgroundtaskhost.exe系统错误解决方法分享。backgroundTaskHost.exe是与Microsoft Cortana的虚拟助手相关联的关键系统进程。近期有Win11用户在电脑的使用中遇到了系统提示“backgroundTaskHost.exe – ApplicATIon Error”的错误,今天我们一起来看…

[附源码]计算机毕业设计JAVA学生考试成绩分析系统

[附源码]计算机毕业设计JAVA学生考试成绩分析系统 项目运行 环境配置: Jdk1.8 Tomcat7.0 Mysql HBuilderX(Webstorm也行) Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。 项目技术: SSM my…

疫情可视化part3

前言 之前在part2中说的添加自定义主题配色已经开发完成了,除此之外我还添加了一些的3d特效。 前期文章 这是part1的文章:https://blog.csdn.net/xi1213/article/details/126824752这是part2的文章:https://blog.csdn.net/xi1213/article/…

[附源码]Python计算机毕业设计Django基于VUE的网上订餐系统

项目运行 环境配置: Pychram社区版 python3.7.7 Mysql5.7 HBuilderXlist pipNavicat11Djangonodejs。 项目技术: django python Vue 等等组成,B/S模式 pychram管理等等。 环境需要 1.运行环境:最好是python3.7.7,…

【Linux】进程

1.linux操作系统要不要管理进程呢?必须要!!!!!!!!! 2.linux是如何管理大量进程的呢?先组织,再描述。 1.什么是进程 进程就是系统运行中…

WordPress批量修改数据库内文章内容文字关键字标题

WordPress网站内容标题文字一键修改,注意到了网站上很多要一个个的修改,那工作了巨大,怎么快速在数据库中用SQL命令批量替换呢? 通过数据库替换方法 1.进入宝塔面板-数据库-选择对应的数据库-管理数据库-登录进来。就可以直接对数…

2022年小美赛“认证杯”数学建模ABCD题初步分析选题建议

​ 2022年小美赛数学建模赛题已经发布: A题 翼龙是如何飞行的 B题 序列的遗传过程 C题 对人类活动进行分类 D题 是否应长期禁止野生动物贸易 总体来说,从赛题难度来看B>A>C>D,其中CD属于ICM交叉学科类赛题,难度系数相对…

腾讯云原生安全“3+1”一体化方案发布,重构云上安全防御体系

12月1日,2022腾讯全球数字生态大会上,以“安全守护,行稳致远”为主题的「云原生安全专场」顺利召开,论坛深入讨论了云原生安全的行业发展趋势、技术探索、产品创新和落地实践。 会上,腾讯安全发布了云原生安全“31”一…

java面向对象-----再谈方法

目录 方法的重载(overload) 可变个数的形参 方法参数的值传递机制 基本数据类型的参数传递 引用数据类型的参数传递 递归(recursion)方法 总结 方法的重载(overload) 重载的概念 :在同一个类中,允许存在一个以上的同名方法,只要它们的参…

基于粒子群优化的神经网络PID控制(Matlab)代码实现

🍒🍒🍒欢迎关注🌈🌈🌈 📝个人主页:我爱Matlab 👍点赞➕评论➕收藏 养成习惯(一键三连)🌻🌻🌻 🍌希…

“空间代谢组学“用于食管鳞状细胞癌早期筛查的研究

​ 代谢组学文献分享—研究背景 近几年代谢组学的研究如火如荼的开展,极大地促进了各学科的发展,如疾病诊断与治疗、营养学、环境毒理学、进化和发育及药物等;与此同时,质谱成像技术(mass spectrometry imaging, MSI…

动态规划思想

1.动态规划思想:因为计算量太大而提出的解放方式。将一件大的事情分成若干个小的事情。2.找一个最优的隐藏序列,结合动态规划思想,可以把这个隐藏序列分成多个时间步,如果每个时间步都是最优的,那么最终的这个序列就是…

软件测试流程分享

工作以来,大大小小参与的项目也有十几个了,涵盖财务类、保险类、OA办公类软件,从测试流程上看,基本也都大同小异,这里将常见的测试流程做一些梳理,供刚入行的朋友学习参考,也欢迎大家完善补充。…

GD32F30x系列ADC源码,对初学者参考价值巨大,(非常详细篇)万字源码

GD32F30x系列ADC源码【1】adc_reg.h [参考]【2】ctrl_adc.h [重点]【3】gd32f30x_dma_reg.h [参考]【4】mon_adc.h [参考 1]【5】rcu.h [参考]【6】ctrl_adc.c [重要]【7】mon_adc.c [参考1]【8】main.c [参考2]这篇文章必须配合这个连接文件一起看,即ADC手册 嵌入式…

我的学校网页期末作业(纯html+css实现)

🎉精彩专栏推荐 💭文末获取联系 ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 💂 作者主页: 【主页——🚀获取更多优质源码】 🎓 web前端期末大作业: 【📚毕设项目精品实战案例 (10…

在js中使用grpc(包括代理)后端使用Go

叙述 最近在研究web端的聊天系统,准备使用grpc作为通讯协议,因为客户端要主动的接受到消息,所以想要使用双向流的grpc。 但是经过几天的研究发现,grpc在浏览器上是不支持的,因为浏览器使用的协议是http1.1&#xff0c…

Apipost自动化测试功能详解

如何快速掌握接口自动化测试?首先我们看看: 1、什么是接口自动化测试? 通常,在设计了测试用例并通过评审之后,由测试人员根据测试用例中描述的规程一步步执行测试,得到实际结果与期望结果的比较。自动化测…

新浪股票行情数据接口有什么作用?

通过新浪股票行情数据接口可以让投资者在实际交易当中能够更加精准的洞悉盘口变化。该接口可以说是目前最好用的免费股票行情数据接口了,虽然一直并未公开,但暂时使用良好。大家用浏览器访问新浪的股票行情数据接口就能查看最新行情数据了。那么今天小编…