2022年小美赛“认证杯”数学建模ABCD题初步分析选题建议

news2025/1/11 21:53:53


2022年小美赛数学建模赛题已经发布:

A题 翼龙是如何飞行的
B题 序列的遗传过程
C题 对人类活动进行分类
D题 是否应长期禁止野生动物贸易

总体来说,从赛题难度来看B>A>C>D,其中CD属于ICM交叉学科类赛题,难度系数相对较小,建议小白同学可以选择C或D,其中D题目虽然多,但每一问基本都很简单,预计选的人会比较多。
2022小美赛“认证杯”
往年建模常见问题类型

趁现在赛题还没更新,给大家汇总一下美赛经常使用到的数学模型,题目八九不离十基本属于一下四种问题,对应的解法也相应给出,分别为:

  • 分类模型

  • 优化模型

  • 预测模型

  • 评价模型

5.1 分类问题

判别分析:

又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:

聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。

聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

5.2 优化问题

线性规划:

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

动态规划:

包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。

动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:

多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:

(1)两个以上的目标函数;

(2)若干个约束条件。有n个决策变量,k个目标函数, m个约束方程,则:

Z=F(X)是k维函数向量,Φ(X)是m维函数向量;G是m维常数向量;

5.3 预测问题

回归拟合预测

拟合预测是建立一个模型去逼近实际数据序列的过程,适用于发展性的体系。建立模型时,通常都要指定一个有明确意义的时间原点和时间单位。而且,当t趋向于无穷大时,模型应当仍然有意义。将拟合预测单独作为一类体系研究,其意义在于强调其唯“象”性。一个预测模型的建立,要尽可能符合实际体系,这是拟合的原则。拟合的程度可以用最小二乘方、最大拟然性、最小绝对偏差来衡量。

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

马尔科夫预测:是一种可以用来进行组织的内部人力资源供给预测的方法.它的基本 思想是找出过去人事变动的 规律,以此来推测未来的人事变动趋势.转换矩阵实际上是转换概率矩阵,描述的是组织中员工流入,流出和内部流动的整体形式,可以作为预测内部劳动力供给的基础.

BP神经网络预测

BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

支持向量机法

支持向量机(SVM)也称为支持向量网络[1],是使用分类与回归分析来分析数据的监督学习模型及其相关的学习算法。在给定一组训练样本后,每个训练样本被标记为属于两个类别中的一个或另一个。支持向量机(SVM)的训练算法会创建一个将新的样本分配给两个类别之一的模型,使其成为非概率二元线性分类器(尽管在概率分类设置中,存在像普拉托校正这样的方法使用支持向量机)。支持向量机模型将样本表示为在空间中的映射的点,这样具有单一类别的样本能尽可能明显的间隔分开出来。所有这样新的样本映射到同一空间,就可以基于它们落在间隔的哪一侧来预测属于哪一类别。

5.4 评价问题

层次分析法

是指将一个复杂的 多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

优劣解距离法

又称理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

模糊综合评价法

是一种基于模糊数学的综合评标方法。 该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。 它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

灰色关联分析法(灰色综合评价法)

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

典型相关分析法:是对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

因子分析法(降维)

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

BP神经网络综合评价法

是一种按误差逆传播算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/55072.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

腾讯云原生安全“3+1”一体化方案发布,重构云上安全防御体系

12月1日,2022腾讯全球数字生态大会上,以“安全守护,行稳致远”为主题的「云原生安全专场」顺利召开,论坛深入讨论了云原生安全的行业发展趋势、技术探索、产品创新和落地实践。 会上,腾讯安全发布了云原生安全“31”一…

java面向对象-----再谈方法

目录 方法的重载(overload) 可变个数的形参 方法参数的值传递机制 基本数据类型的参数传递 引用数据类型的参数传递 递归(recursion)方法 总结 方法的重载(overload) 重载的概念 :在同一个类中,允许存在一个以上的同名方法,只要它们的参…

基于粒子群优化的神经网络PID控制(Matlab)代码实现

🍒🍒🍒欢迎关注🌈🌈🌈 📝个人主页:我爱Matlab 👍点赞➕评论➕收藏 养成习惯(一键三连)🌻🌻🌻 🍌希…

“空间代谢组学“用于食管鳞状细胞癌早期筛查的研究

​ 代谢组学文献分享—研究背景 近几年代谢组学的研究如火如荼的开展,极大地促进了各学科的发展,如疾病诊断与治疗、营养学、环境毒理学、进化和发育及药物等;与此同时,质谱成像技术(mass spectrometry imaging, MSI…

动态规划思想

1.动态规划思想:因为计算量太大而提出的解放方式。将一件大的事情分成若干个小的事情。2.找一个最优的隐藏序列,结合动态规划思想,可以把这个隐藏序列分成多个时间步,如果每个时间步都是最优的,那么最终的这个序列就是…

软件测试流程分享

工作以来,大大小小参与的项目也有十几个了,涵盖财务类、保险类、OA办公类软件,从测试流程上看,基本也都大同小异,这里将常见的测试流程做一些梳理,供刚入行的朋友学习参考,也欢迎大家完善补充。…

GD32F30x系列ADC源码,对初学者参考价值巨大,(非常详细篇)万字源码

GD32F30x系列ADC源码【1】adc_reg.h [参考]【2】ctrl_adc.h [重点]【3】gd32f30x_dma_reg.h [参考]【4】mon_adc.h [参考 1]【5】rcu.h [参考]【6】ctrl_adc.c [重要]【7】mon_adc.c [参考1]【8】main.c [参考2]这篇文章必须配合这个连接文件一起看,即ADC手册 嵌入式…

我的学校网页期末作业(纯html+css实现)

🎉精彩专栏推荐 💭文末获取联系 ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 💂 作者主页: 【主页——🚀获取更多优质源码】 🎓 web前端期末大作业: 【📚毕设项目精品实战案例 (10…

在js中使用grpc(包括代理)后端使用Go

叙述 最近在研究web端的聊天系统,准备使用grpc作为通讯协议,因为客户端要主动的接受到消息,所以想要使用双向流的grpc。 但是经过几天的研究发现,grpc在浏览器上是不支持的,因为浏览器使用的协议是http1.1&#xff0c…

Apipost自动化测试功能详解

如何快速掌握接口自动化测试?首先我们看看: 1、什么是接口自动化测试? 通常,在设计了测试用例并通过评审之后,由测试人员根据测试用例中描述的规程一步步执行测试,得到实际结果与期望结果的比较。自动化测…

新浪股票行情数据接口有什么作用?

通过新浪股票行情数据接口可以让投资者在实际交易当中能够更加精准的洞悉盘口变化。该接口可以说是目前最好用的免费股票行情数据接口了,虽然一直并未公开,但暂时使用良好。大家用浏览器访问新浪的股票行情数据接口就能查看最新行情数据了。那么今天小编…

New Features Of JDK - JDK9 Modular System

Modular System 是 JAVA9 中提供的新特性,它从一个独立的开源项目而来,名为 Jigsaw Project。在此之前,我们对于 Java 技术栈中模块化的认知是基于 OSGI 的,实际上 OSGI 也确实形成了它自己独有的体系,并且是一定程度上…

TFT espi相关

文章目录1 .库文件设置1-1:这是库文件 tft _espi1-2:如何确定像素排列方式1-3:颜色显示异常处理方法2 .显示图片3.显示图片方法1 .库文件设置 1-1:这是库文件 tft _espi 链接:https://pan.baidu.com/s/1sT6s6VtpuwNV…

Spring【五大类注解的存储和读取Bean方法注解】

Spring【5大类注解的存储和读取Bean对象】🍎一. 五大类存储 Bean 对象🍒1.1 配置spring-config.xml扫描路径🍒1.2 添加五大类注解存储 Bean 对象🍉1.2.1 Controller(控制器存储)🍉1.2.2 Service…

ADAU1860调试心得(14)单片机启动与控制ADAU1860详解

ADAU1860实现脱机运行,是开发这个DSP的最后一步。这颗芯片有一颗HIFI 3Z的蓝牙MCU内嵌,用户可以用这颗MCU来进行脱机,甚至直接用C来开发1860(有专门的SDK,不在此做更多阐述),但是这个HIFI 3Z的软…

零代码使用air32做USB转串口

零代码实现USB转串口 环境搭建参考Air32F103使用手册 创建工程 新建工程 选择设备为AIR32F103CB 在弹出的RTE窗口勾选如下组件 配置工程 修改编译器为AC5,并启用MicroLIB 启用C99标准支持 添加代码 添加功能代码,在Source Group文件夹右键&#xff…

观测云产品更新|应用性能新增服务清单功能;用户访问监测 Session 查看器调整;事件新增移动端跳转选项等

观测云更新 应用性能新增服务清单功能 应用性能监测服务清单,支持实时查看不同服务的所有权、依赖关系、性能、关联的仪表版以及关联分析,快速发现和解决服务的性能问题,帮助团队高效地构建及管理大规模的端到端的分布式应用。 更多详情可…

FineReport可视化数据图表- 函数计算组成和语法示例

1.1设计报表 例如,使用内置数据集「销量」创建数据集ds1,对不同地区销量高低做判断。 将「地区」字段拖入 A2,将「销量」字段拖入B2,并设置「销量」展示方式为求和,然后对不同地区的销量情况进行求和,如下…

【吴恩达机器学习笔记】九、机器学习系统的设计

✍个人博客:https://blog.csdn.net/Newin2020?spm1011.2415.3001.5343 📣专栏定位:为学习吴恩达机器学习视频的同学提供的随堂笔记。 📚专栏简介:在这个专栏,我将整理吴恩达机器学习视频的所有内容的笔记&…

Allegro如何用list文件抓取器件操作指导

Allegro如何用list文件抓取器件操作指导 Allegro支持list文件在PCB上抓取器件,具体操作如下 在pcb相同目录下新建一个后缀为.lst文件,任意命名一个名字比如123.lst 原理图中批量选择需要抓取器件的信息,支持批量选择,无用的信息框选进去也是可以的 复制到新建lst文件中去…