目录
1. C/C++内存分布
2. C++内存管理方式
2.1 new/delete操作内置类型
2.2 new和delete操作自定义类型
3. new和delete的实现原理
3.1 内置类型
3.2 自定义类型
4. 定位new
1. C/C++内存分布
说明:
1. 栈又叫堆栈--非静态局部变量/函数参数/返回值等等,栈是向下增长的。
2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存,做进程间通信。
3. 堆用于程序运行时动态内存分配,堆是可以上增长的。
4. 数据段--存储全局数据和静态数据。
5. 代码段--可执行的代码/只读常量。
2. C++内存管理方式
C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力而且使用起来比较麻烦。
C++ 又进化出属于自己的内存管理方式:通过 new 和 delete 操作符进行动态内存管理。
2.1 new/delete操作内置类型
void Test()
{
// 动态申请一个int类型的空间
int* ptr4 = new int;
// 动态申请一个int类型的空间并初始化为10
int* ptr5 = new int(10);
// 动态申请10个int类型的空间
int* ptr6 = new int[3];
delete ptr4;
delete ptr5;
delete[] ptr6;
}
说明:
new 不同于malloc 不需要类型转化,并且也可以实现初始化
注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用 new[]和delete[],注意:匹配起来使用。
2.2 new和delete操作自定义类型
class A
{
public:
A(int a = 0)
: _a(a)
{
cout << "A():" << this << endl;
}
~A()
{
cout << "~A():" << this << endl;
}
private:
int _a;
};
int main()
{
// new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数
A* p1 = (A*)malloc(sizeof(A));
A* p2 = new A(1);
free(p1);
delete p2;
// 内置类型是几乎是一样的
int* p3 = (int*)malloc(sizeof(int)); // C
int* p4 = new int;
free(p3);
delete p4;
A* p5 = (A*)malloc(sizeof(A)*10);
A* p6 = new A[10];
free(p5);
delete[] p6;
return 0;
}
注意:在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与 free不会。
3. new和delete的实现原理
3.1 内置类型
如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是: new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。
3.2 自定义类型
new的原理
1. 调用operator new函数申请空间
2. 在申请的空间上执行构造函数,完成对象的构造
delete的原理
1. 在空间上执行析构函数,完成对象中资源的清理工作
2. 调用operator delete函数释放对象的空间
new T[N]的原理
1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对 象空间的申请
2. 在申请的空间上执行N次构造函数
delete[]的原理
1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间
4. 定位new
定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。
使用格式:
new (place_address) type或者new (place_address) type(initializer-list)
place_address必须是一个指针,initializer-list是类型的初始化列表
使用场景:
定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如 果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。
class A
{
public:
A(int a = 0)
: _a(a)
{
cout << "A():" << this << endl;
}
~A()
{
cout << "~A():" << this << endl;
}
private:
int _a;
};
// 定位new/replacement new
int main()
{
// p1现在指向的只不过是与A对象相同大小的一段空间,还不能算是一个对象,因为构造函数没
有执行
A* p1 = (A*)malloc(sizeof(A));
new(p1)A; // 注意:如果A类的构造函数有参数时,此处需要传参
p1->~A();
free(p1);
A* p2 = (A*)operator new(sizeof(A));
new(p2)A(10);
p2->~A();
operator delete(p2);
return 0;
}