美团二面:聊聊ConcurrentHashMap的存储流程

news2025/1/4 19:27:23
  • 👏作者简介:大家好,我是爱敲代码的小黄,独角兽企业的Java开发工程师,CSDN博客专家,阿里云专家博主
  • 📕系列专栏:Java设计模式、Spring源码系列、Netty源码系列、Kafka源码系列、JUC源码系列
  • 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦
  • 🍂博主正在努力完成2023计划中:以梦为马,扬帆起航,2023追梦人
  • 📝联系方式:hls1793929520,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬👀

在这里插入图片描述

文章目录

    • 一、引言
    • 二、使用
    • 三、源码
      • 1、初始化
      • 2、存储操作
        • 2.1 计算索引下标
        • 2.2 初始化数组
        • 2.3 将数据插入到数组
        • 2.4 扩容(后面聊)
        • 2.5 将数据插入到链表
        • 2.6 将数据插入到红黑树
        • 2.7 链表转红黑树
    • 四、流程图
      • 1、初始化阶段
      • 2、存储阶段
    • 五、总结

一、引言

ConcurrentHashMap技术在互联网技术使用如此广泛,几乎所有的后端技术面试官都要在ConcurrentHashMap技术的使用和原理方面对小伙伴们进行 360° 的刁难。

作为一个在互联网公司面一次拿一次 Offer 的面霸,打败了无数竞争对手,每次都只能看到无数落寞的身影失望的离开,略感愧疚(请允许我使用一下夸张的修辞手法)。

于是在一个寂寞难耐的夜晚,暖男我痛定思痛,决定开始写 《吊打面试官》 系列,希望能帮助各位读者以后面试势如破竹,对面试官进行 360° 的反击,吊打问你的面试官,让一同面试的同僚瞠目结舌,疯狂收割大厂 Offer!

虽然现在是互联网寒冬,但乾坤未定,你我皆是黑马

二、使用

我们经常在线程安全的场景下使用 ConcurrentHashMap,基本使用如下:

public class ConcurrentHashMapTest {
    public static void main(String[] args) {
        ConcurrentHashMap<String, String> map = new ConcurrentHashMap<>();
        map.put("test1", "1");
        map.put("test2", "2");
        map.put("test3", "3");
        map.remove("test1");
        System.out.println(map.get("test1"));
        System.out.println(map.get("test2"));
    }
}

使用的话,我相信大部分的读者应该都会的,这里小黄也不多介绍了,我们直接进入正题

三、源码

1、初始化

还是我们的老样子,从初始化开始聊源码

如果我们初始化时不携带入参的话,初始化方法如下:可以看到,基本没有什么东西

public ConcurrentHashMap() {}

如果你携带了入参的话,初始化方法如下:

public ConcurrentHashMap(int initialCapacity) {
    // 假如哥们传进来入参小于0
    if (initialCapacity < 0)
        // 直接抛出异常,说明哥们在搞笑
        throw new IllegalArgumentException();
    // 用传进来的数值与 MAXIMUM_CAPACITY >>> 1 进行对比
    // 若大于则使用MAXIMUM_CAPACITY
    // 小于则使用距离initialCapacity最近的2次幂
    int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
               MAXIMUM_CAPACITY :
               tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
    this.sizeCtl = cap;
}

// 根据传进的C的数值,找到其距离最近的2次幂
private static final int tableSizeFor(int c) {
    int n = c - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

2、存储操作

public V put(K key, V value) {
    // 在调用put方法时,会调用putVal,第三个参数默认传递为false
    // 在调用putIfAbsent时,会调用putVal方法,第三个参数传递的为true
    // 如果传递为false,代表key一致时,直接覆盖数据
    // 如果传递为true,代表key一致时,什么都不做,key不存在,正常添加(Redis,setnx)
    return putVal(key, value, false);
}

2.1 计算索引下标

final V putVal(K key, V value, boolean onlyIfAbsent) {
    // 如果当前的key或者value是空的话,直接抛出异常
    if (key == null || value == null){
        throw new NullPointerException();
    }
    // 获取其下标
    int hash = spread(key.hashCode());
    int binCount = 0;
}

// 作用:用高16位与低16位进行^运算,让高位的数值可以进行计算
// 为什么原来的高位没有办法计算呢?
// 我们后面的 (n - 1) & hash 的数据,&数据如下:
// 00000000 00000000 00000000 01010101
// 0000000  00000000 00000000 00011111
// 我们这里看到,如果高16位不与低16位^运算的话,那么基本我们的高位永远也参加不了计算
// 为什么需要&HASH_BITS:
// 保证最终的结果大于0,因为如果结果小于0的话,代表不同的意义:
// static final int MOVED     = -1; // 代表当前hash位置的数据正在扩容!
// static final int TREEBIN   = -2; // 代表当前hash位置下挂载的是一个红黑树
// static final int RESERVED  = -3; // 预留当前索引位置……
static final int spread(int h) {
    return (h ^ (h >>> 16)) & HASH_BITS;
}

2.2 初始化数组

// tab指向table,标准的Doug Lea写法
for (Node<K,V>[] tab = table;;) {
    Node<K,V> f; 
    int n, i, fh;
    // 如果当前的数组为空或者他的数组长度为0
    // 则进行初始化
    if (tab == null || (n = tab.length) == 0){
        tab = initTable();
    }
}


// sizeCtl:是数组在初始化和扩容操作时的一个控制变量
// -1:代表当前数组正在初始化
// 小于-1:低16位代表当前数组正在扩容的线程个数(如果1个线程扩容,值为-2,如果2个线程扩容,值为-3)
// 0:代表数组还没初始化
// 大于0:代表当前数组的扩容阈值,或者是当前数组的初始化大小
private final Node<K,V>[] initTable() {
    // 经典引用
    Node<K,V>[] tab; 
    int sc;
    // 当前的初始化没有完成时,会一直进行该while循环
    while ((tab = table) == null || tab.length == 0) {
        // 如果小于0,代表当前数组正在扩容或者初始化
        // 当前线程等待一下
        if ((sc = sizeCtl) < 0)
            Thread.yield(); 
        // 尝试将SIZECTL从SC更改为-1
        // CAS修改,线程安全,保证只有一个线程执行数组初始化
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                // 更改成功,再次判断一下(参考DCL)
                // 防止下面sizeCtl = sc刚赋值完,正好有线程走到这一步,不做限制的话就会重新初始化了
                if ((tab = table) == null || tab.length == 0) {
                    // 判断当前的sc是否大于0(sc=SIZECTL)
                    // 大于0:n = sc
                    // 小于等于0:n = DEFAULT_CAPACITY
                    // 一般我们只要不传入入参,这里基本走DEFAULT_CAPACITY的扩容
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    // 扩容即可
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    // table、tab赋值
                    table = tab = nt;
                    // 这里有点意思
                    // 将sc赋值成(n - 1/4n) = 0.75N
                    // 这里0.75是不是很熟悉,负载因子
                    sc = n - (n >>> 2);
                }
            } finally {
                // 将上面的扩容阈值赋予sizeCtl
                sizeCtl = sc;
            }
            // 结束循环
            break;
        }
    }
    return tab;
}

2.3 将数据插入到数组

// 如果当前数组该下标没有数据,直接插入即可
if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
    // CAS将当前的hash、key、value组装成一个Node,插入当前数组i位置
    // 插入成功结束即可
    if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))){
        break;
    }      
}

// 基于我们上面说的(n - 1) & hash算出下标
// 返回当前数组下该下标的数据
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
    return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}

static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v) {
    return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}

static class Node<K,V> implements Map.Entry<K,V> {
    // 当前的hash值
    final int hash;
    // key
    final K key;
    // value
    volatile V val;
    // 下一个节点(用来连链表的)
    volatile Node<K,V> next;
}

2.4 扩容(后面聊)

  • 这部分后面聊
// 判断当前位置数据是否正在扩容……
if ((fh = f.hash) == MOVED)
    // 如果在扩容,则当前线程帮助其扩容
    tab = helpTransfer(tab, f);

2.5 将数据插入到链表

else {
    V oldVal = null;
    // 锁当前的数组下标i的数组块
    synchronized (f) {
        // 看一下当前数组的i位置是不是等于f
        // 相当于再次校验一次(DCL)
        if (tabAt(tab, i) == f) {
            // static final int MOVED     = -1; // 代表当前hash位置的数据正在扩容!
		   // static final int TREEBIN   = -2; // 代表当前hash位置下挂载的是一个红黑树
		   // static final int RESERVED  = -3; // 预留当前索引位置……
            // fh = f.hash
            // 判断下当前的fh是否大于0,也就是不是上面三种情况
            if (fh >= 0) {
                // 记录当前链表下面挂了几个
                binCount = 1;
                // 获取当前的数组节点,没循环一次binCount加一
                for (Node<K,V> e = f;; ++binCount) {
                    K ek;
                    // 如果当前数组下标的hash和我们入参的hash一样,代表重复数据
                    if (e.hash == hash &&
                        // 如果当前的key也等于原始的key
                        // 或者是根据equals判断出来的相等(因为有一些可能重写了equals方法)
                        ((ek = e.key) == key ||
                         (ek != null && key.equals(ek)))) {
                        // 将当前老的数据赋值给oldVal
                        oldVal = e.val;
                        // 这里的onlyIfAbsent我们之前也聊过
                        // 如果传递为false,代表key一致时,直接覆盖数据
   					  // 如果传递为true,代表key一致时,什么都不做,key不存在,正常添加(Redis,setnx)
                        if (!onlyIfAbsent)
                            // 覆盖数据
                            e.val = value;
                        break;
                    }
                    // 这里就不是相同的数据了,需要挂链表下面了
                    // 先获取数组最上面的数据
                    Node<K,V> pred = e;
                    // 判断下当前的下一个数据是不是空指针
                    // 不是空指针的话,继续指向下一个指针
                    if ((e = e.next) == null) {
                        // 直到最后的时候,创建一个节点挂上去
                        pred.next = new Node<K,V>(hash, key,value, null);
                        break;
                    }
                }
            }
}

2.6 将数据插入到红黑树

 // 如果上面不成立的话,也就是当前的数组下面是一个红黑树
 // 需要将当前的数据放到红黑树里面
else if (f instanceof TreeBin) {
    Node<K,V> p;
    binCount = 2;
    // 将当前数据放入到红黑树中
    if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {
        // 记录一下老数据
        oldVal = p.val;
        // 这里的onlyIfAbsent我们之前也聊过
        // 如果传递为false,代表key一致时,直接覆盖数据
        // 如果传递为true,代表key一致时,什么都不做,key不存在,正常添加(Redis,setnx)
        if (!onlyIfAbsent)
            // 覆盖数据
            p.val = value;
    }
}

2.7 链表转红黑树

// 如果当前的链表上的数据不等于0
if (binCount != 0) {
    // 当前列表下的数据长度大于8
    // 这里需要注意,大于8的话并不是立即转成红黑树,还需要判断当前数组的长度
    if (binCount >= TREEIFY_THRESHOLD)
        treeifyBin(tab, i);
    if (oldVal != null)
        return oldVal;
    break;
}
static final int TREEIFY_THRESHOLD = 8;
static final int MIN_TREEIFY_CAPACITY = 64;

private final void treeifyBin(Node<K,V>[] tab, int index) {
    Node<K,V> b; int n, sc;
    // 如果当前的数组不为空
    if (tab != null) {
        // 如果当前的数组长度小于64,则没必要转成红黑树
        // 直接扩容即可
        if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
            tryPresize(n << 1);
        // 后面的是转成红黑树的代码
        // 我们下一章在分析
        else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
            synchronized (b) {
                if (tabAt(tab, index) == b) {
                    TreeNode<K,V> hd = null, tl = null;
                    for (Node<K,V> e = b; e != null; e = e.next) {
                        TreeNode<K,V> p = new TreeNode<K,V>(e.hash, e.key, e.val, null, null);
                        if ((p.prev = tl) == null){
                            hd = p;
                        }
                        else{
                            tl.next = p;
                        }
                        tl = p;
                    }
                    setTabAt(tab, index, new TreeBin<K,V>(hd));
                }
            }
        }
    }
}

四、流程图

1、初始化阶段

image-20230515224758989

2、存储阶段

image-20230516220514273

五、总结

鲁迅先生曾说:独行难,众行易,和志同道合的人一起进步。彼此毫无保留的分享经验,才是对抗互联网寒冬的最佳选择。

其实很多时候,并不是我们不够努力,很可能就是自己努力的方向不对,如果有一个人能稍微指点你一下,你真的可能会少走几年弯路。

如果你也对 后端架构和中间件源码 有兴趣,欢迎添加博主微信:hls1793929520,一起学习,一起成长

我是爱敲代码的小黄,独角兽企业的Java开发工程师,CSDN博客专家,喜欢后端架构和中间件源码。

我们下期再见。

我从清晨走过,也拥抱夜晚的星辰,人生没有捷径,你我皆平凡,你好,陌生人,一起共勉。

往期文章推荐:

  • 从源码全面解析Java 线程池的来龙去脉
  • 从源码全面解析LinkedBlockingQueue的来龙去脉
  • 从源码全面解析 ArrayBlockingQueue 的来龙去脉
  • 从源码全面解析ReentrantLock的来龙去脉
  • 阅读完synchronized和ReentrantLock的源码后,我竟发现其完全相似
  • 从源码全面解析 ThreadLocal 关键字的来龙去脉
  • 从源码全面解析 synchronized 关键字的来龙去脉
  • 阿里面试官让我讲讲volatile,我直接从HotSpot开始讲起,一套组合拳拿下面试

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/534916.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

手把手教你彻底卸载MySQL

❤写在前面 ❤博客主页&#xff1a;努力的小鳴人 ❤系列专栏&#xff1a;MySQL8.0基础学习 ❤欢迎小伙伴们&#xff0c;点赞&#x1f44d;关注&#x1f50e;收藏&#x1f354;一起学习&#xff01; ❤如有错误的地方&#xff0c;还请小伙伴们指正&#xff01;&#x1f339; ​ …

抖音SEO矩阵系统源码开发搭建(一)

抖音SEI矩阵系统源码开发&#xff0c;需要遵循一下步骤&#xff1a; 1. 确定需求和功能&#xff1a;明确系统的主要目标和需要实现的功能&#xff0c;包括关键词研究、短视频制作、外链建设、数据分析、账号设置优化等方面。 2. 设计系统架构&#xff1a;根据需求和功能确定系…

Golang每日一练(leetDay0068) 二叉树右视图、岛屿数量

目录 199. 二叉树的右视图 Binarytree Right Side View &#x1f31f;&#x1f31f; 200. 岛屿数量 Number-of-islands &#x1f31f;&#x1f31f; &#x1f31f; 每日一练刷题专栏 &#x1f31f; Golang每日一练 专栏 Python每日一练 专栏 C/C每日一练 专栏 Java每日…

【C++】图解类和对象(中)

类和对象&#xff08;中&#xff09; 文章目录 类和对象&#xff08;中&#xff09;一、类的6个默认成员函数二、构造函数1.定义2.特性3.对特性的理解及几点注意事项 二、析构函数总结 一、类的6个默认成员函数 如果一个类中什么成员都没有&#xff0c;简称为空类。 空类中真的…

只需6步,就能让你的 React +Tailwind.css站点实现暗黑功能

欢迎回来&#xff0c;开始一次新的编码之旅吧&#xff01;今天&#xff0c;我们将进入神秘的世界&#xff0c;探索如何在你的React.js网站中使用Tailwind.css实现暗黑模式。Tailwind.css 是你编码工具中的强大助手&#xff0c;结合React.js使用&#xff0c;你可以创造出令人惊叹…

Swoft中使用Consul微服务

目录 Swoft中接入Consul Swoft服务限流 Swoft服务熔断和降级 在之前我写的一篇内容&#xff1a;PHP中接入consul&#xff0c;实现微服务的注册发现和配置中心_浮尘笔记的博客-CSDN博客 中&#xff0c;使用ThinkPHP6.0框架接入了微服务Consul&#xff0c;并且留下了一个彩蛋 …

【K8s】Helm

文章目录 一、Helm介绍1、背景2、介绍3、核心概念4、chart的基本结构5、helm官网 二、部署Helm1、安装helm客户端2、安装Tiller 三、常用指令1、仓库相关 helm repo2、chart相关 四、入门案例1、构建第一个chart2、将chart包发布到Repository3、在 Kubernetes 中部署应用4、升级…

用JS实现虚拟列表(IT枫斗者)

用JS实现虚拟列表 简介 当一个列表需要渲染大量数据的时候是非常耗时的&#xff0c;而且在列表滚动的过程中会出现卡顿的现象。即使用上懒加载解决了列表初始化时渲染过慢的问题&#xff0c;但是每次拉取下一页数据的时候都会造成列表的重新渲染。随着拉取的数据越来越多&…

使用火焰图进行性能分析(一)

为什么会用到火焰图&#xff1f;火焰图能干那些事儿&#xff1f; 分析函数执行的频度&#xff1b;分析哪些函数经常阻塞&#xff1b;分析哪些函数频繁操作内存&#xff1b; 火焰图的主要特点&#xff1a; 每一列代表一个调用栈&#xff0c;每个格子代表一个函数&#xff1b;…

计算机图形学-GAMES101-4

一、变换矩阵中的旋转部分 当我们旋转Q角度和旋转-Q角度时&#xff0c;变换矩阵中旋转的部分如下图所示&#xff1a; 旋转Q和旋转-Q的变换矩阵应该互为逆矩阵&#xff0c;而我们可以看到它们互为对方矩阵的转置。其实Rq是一个正交矩阵&#xff0c;因此其逆矩阵就是它自己的转…

chrome渲染引擎的工作主流程

一见如故 浏览器的渲染&#xff1a;HTML字符串>渲染成最终的像素1、CSS Parser发生在css预解析线程中&#xff0c;不在主线程中&#xff1b;会预览整个HTML文档&#xff0c;下载css相关全部内容&#xff0c;解析生成CSSOM树 2、attachment >以及生成布局树>分层>按…

微服务的使用场景和架构设计方案

目录 【单体架构】 【微服务解决哪些问题】 微服务的拆分原则 微服务使用过程中有哪些坑&#xff1f; 【RPC框架】 常见的网络 IO 模型 RPC 执行过程总结 【CAP原理】 如何使用 CAP 理论 【服务注册和发现】 【配置中心】 【Consul】 Consul介绍 Consul角色 Con…

Go语言的结构体、方法、指针

目录 【定义新数据类型】 【结构体】 定义结构体 结构体变量的声明和初始化 结构体的内存表示 【方法】 receiver 参数 receiver参数的约束 方法的深入理解 goroutine中方法的使用 receiver 参数类型如何选择&#xff1f;T还是*T&#xff1f; 方法集合 【指针】 …

9. 三星索引和Mysql内核查询成本计算实战

MySQL性能调优 1. 高性能的索引创建策略1.1 只为用于搜索、排序或分组的列创建索引1.2 合理设计多列索引1.3 尽可能设计三星索引1.4 主键尽量是很少改变的列1.5 处理冗余和重复索引1.6 删除未使用的索引1.7 InnoDB中的索引 2. 补充资料&#xff1a;磁盘和B树Mysql内核查询成本计…

从0到1无比流畅的React入门教程

无比流畅的React入门教程TOC React 是什么 简介 用于构建 Web 和原生交互界面的库React 用组件创建用户界面通俗来讲&#xff1a;是一个将数据渲染为HTML视图的开源JS库 其他信息 Facebook 开发&#xff0c;并且开源 为什么使用React? 原生JS使用DOM-API修改UI代码很繁…

使用Appium实现录制回放

1、cmd中转到abd所在位置&#xff1a; cd C:\Users\lenovo\AppData\Local\Android\Sdk\platform-tools 2、打开Appium运行 3、打开Appium Inspector &#xff08;1&#xff09;获取设备名称 在cmd中输入以下命令&#xff1a; adb devices &#xff08;2&#xff09;获取appP…

c++核心知识—多态

目录 一、多态 1、多态的基本概念 2、深入剖析多态原理&#xff1a; 3、纯虚函数和抽象类 4、虚析构和纯虚析构 一、多态 1、多态的基本概念 多态是C面向对象三大特性之一 多态分为两类&#xff1a; 1、静态多态: 函数重载 和 运算符重载 属于静态多态&#xff0c;复用…

前端八股文(二)

1.什么是diff算法&#xff1f; https://www.bilibili.com/video/BV1JR4y1R7Ln/?spm_id_from333.337.search-card.all.click&vd_source0406fa5cf8203ba41f1c8aec5f967e9d 我们修改了文本内容后会生成新的虚拟dom,新旧俩个虚拟dom之间是存在一定差异的&#xff0c;如果能快…

未来的航空电子设备会是什么样子?

具有多功能航空电子设备、大触摸屏显示器、先进通信系统、高性能/低功耗解决方案和人工智能 (AI) 功能的驾驶舱将成为未来军事飞行员日常生活的一部分。 如今&#xff0c;配备模拟驾驶舱的军用飞机已经很少见&#xff0c;因为大多数都已被采用先进嵌入式硬件和软件解决方案的现…

金融学学习笔记第2章

第2章 金融市场和金融机构 一、金融体系 金融体系包括金融市场、中介、服务公司和其它用于执行家庭、企业及政府的金融决策的机构 1.金融市场 金融市场&#xff1a;以金融资产为交易对象而形成的供求关系及其机制的总和 金融市场可分为有特定地理位置的市场和没有特定地点的市…