Java进阶-查找算法

news2025/2/23 12:42:47

常见的七种查找算法:

1. 基本查找

​ 也叫做顺序查找

​ 说明:顺序查找适合于存储结构为数组或者链表。

基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线的一端开始,顺序扫描,依次将遍历到的结点与要查找的值相比较,若相等则表示查找成功;若遍历结束仍没有找到相同的,表示查找失败。

示例代码:

public class A01_BasicSearchDemo1 {
    public static void main(String[] args) {
        //基本查找/顺序查找
        //核心:
        //从0索引开始挨个往后查找

        //需求:定义一个方法利用基本查找,查询某个元素是否存在
        //数据如下:{131, 127, 147, 81, 103, 23, 7, 79}


        int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};
        int number = 82;
        System.out.println(basicSearch(arr, number));

    }

    //参数:
    //一:数组
    //二:要查找的元素

    //返回值:
    //元素是否存在
    public static boolean basicSearch(int[] arr, int number){
        //利用基本查找来查找number在数组中是否存在
        for (int i = 0; i < arr.length; i++) {
            if(arr[i] == number){
                return true;
            }
        }
        return false;
    }
}

2. 二分查找

​ 也叫做折半查找

说明:元素必须是有序的,从小到大,或者从大到小都是可以的。

如果是无序的,也可以先进行排序。但是排序之后,会改变原有数据的顺序,查找出来元素位置跟原来的元素可能是不一样的,所以排序之后再查找只能判断当前数据是否在容器当中,返回的索引无实际的意义。

基本思想:也称为是折半查找,属于有序查找算法。用给定值先与中间结点比较。比较完之后有三种情况:

  • 相等

    说明找到了

  • 要查找的数据比中间节点小

    说明要查找的数字在中间节点左边

  • 要查找的数据比中间节点大

    说明要查找的数字在中间节点右边

代码示例:

package com.itheima.search;

public class A02_BinarySearchDemo1 {
    public static void main(String[] args) {
        //二分查找/折半查找
        //核心:
        //每次排除一半的查找范围

        //需求:定义一个方法利用二分查找,查询某个元素在数组中的索引
        //数据如下:{7, 23, 79, 81, 103, 127, 131, 147}

        int[] arr = {7, 23, 79, 81, 103, 127, 131, 147};
        System.out.println(binarySearch(arr, 150));
    }

    public static int binarySearch(int[] arr, int number){
        //1.定义两个变量记录要查找的范围
        int min = 0;
        int max = arr.length - 1;

        //2.利用循环不断的去找要查找的数据
        while(true){
            if(min > max){
                return -1;
            }
            //3.找到min和max的中间位置
            int mid = (min + max) / 2;
            //4.拿着mid指向的元素跟要查找的元素进行比较
            if(arr[mid] > number){
                //4.1 number在mid的左边
                //min不变,max = mid - 1;
                max = mid - 1;
            }else if(arr[mid] < number){
                //4.2 number在mid的右边
                //max不变,min = mid + 1;
                min = mid + 1;
            }else{
                //4.3 number跟mid指向的元素一样
                //找到了
                return mid;
            }

        }
    }
}

3. 插值查找

在介绍插值查找之前,先考虑一个问题:

​ 为什么二分查找算法一定要是折半,而不是折四分之一或者折更多呢?

其实就是因为方便,简单,但是如果我能在二分查找的基础上,让中间的mid点,尽可能靠近想要查找的元素,那不就能提高查找的效率了吗?

二分查找中查找点计算如下:

mid=(low+high)/2, 即mid=low+1/2*(high-low);

我们可以将查找的点改进为如下:

mid=low+(key-a[low])/(a[high]-a[low])*(high-low),

这样,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。

基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。

**细节:**对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。

代码跟二分查找类似,只要修改一下mid的计算方式即可。

4. 斐波那契查找

在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。

黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。

0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。

在数学中有一个非常有名的数学规律:斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….

(从第三个数开始,后边每一个数都是前两个数的和)。

然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。

img

基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。

斐波那契查找也是在二分查找的基础上进行了优化,优化中间点mid的计算方式即可

代码示例:

public class FeiBoSearchDemo {
    public static int maxSize = 20;

    public static void main(String[] args) {
        int[] arr = {1, 8, 10, 89, 1000, 1234};
        System.out.println(search(arr, 1234));
    }

    public static int[] getFeiBo() {
        int[] arr = new int[maxSize];
        arr[0] = 1;
        arr[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            arr[i] = arr[i - 1] + arr[i - 2];
        }
        return arr;
    }

    public static int search(int[] arr, int key) {
        int low = 0;
        int high = arr.length - 1;
        //表示斐波那契数分割数的下标值
        int index = 0;
        int mid = 0;
        //调用斐波那契数列
        int[] f = getFeiBo();
        //获取斐波那契分割数值的下标
        while (high > (f[index] - 1)) {
            index++;
        }
        //因为f[k]值可能大于a的长度,因此需要使用Arrays工具类,构造一个新法数组,并指向temp[],不足的部分会使用0补齐
        int[] temp = Arrays.copyOf(arr, f[index]);
        //实际需要使用arr数组的最后一个数来填充不足的部分
        for (int i = high + 1; i < temp.length; i++) {
            temp[i] = arr[high];
        }
        //使用while循环处理,找到key值
        while (low <= high) {
            mid = low + f[index - 1] - 1;
            if (key < temp[mid]) {//向数组的前面部分进行查找
                high = mid - 1;
                /*
                  对k--进行理解
                  1.全部元素=前面的元素+后面的元素
                  2.f[k]=k[k-1]+f[k-2]
                  因为前面有k-1个元素没所以可以继续分为f[k-1]=f[k-2]+f[k-3]
                  即在f[k-1]的前面继续查找k--
                  即下次循环,mid=f[k-1-1]-1
                 */
                index--;
            } else if (key > temp[mid]) {//向数组的后面的部分进行查找
                low = mid + 1;
                index -= 2;
            } else {//找到了
                //需要确定返回的是哪个下标
                if (mid <= high) {
                    return mid;
                } else {
                    return high;
                }
            }
        }
        return -1;
    }
}

5. 分块查找

当数据表中的数据元素很多时,可以采用分块查找。

汲取了顺序查找和折半查找各自的优点,既有动态结构,又适于快速查找

分块查找适用于数据较多,但是数据不会发生变化的情况,如果需要一边添加一边查找,建议使用哈希查找

分块查找的过程:

  1. 需要把数据分成N多小块,块与块之间不能有数据重复的交集。
  2. 给每一块创建对象单独存储到数组当中
  3. 查找数据的时候,先在数组查,当前数据属于哪一块
  4. 再到这一块中顺序查找

代码示例:

package com.iflytek.day18;

public class A03_BlockSearchDemo {
    public static void main(String[] args) {
        /*
            分块查找
            核心思想:
                块内无序,块间有序
            实现步骤:
                1.创建数组blockArr存放每一个块对象的信息
                2.先查找blockArr确定要查找的数据属于哪一块
                3.再单独遍历这一块数据即可
        */
        int[] arr = {16, 5, 9, 12,21, 18,
                     32, 23, 37, 26, 45, 34,
                     50, 48, 61, 52, 73, 66};

        //创建三个块的对象
        Block b1 = new Block(21,0,5);
        Block b2 = new Block(45,6,11);
        Block b3 = new Block(73,12,17);

        //定义数组用来管理三个块的对象(索引表)
        Block[] blockArr = {b1,b2,b3};

        //定义一个变量用来记录要查找的元素
        int number = 37;

        //调用方法,传递索引表,数组,要查找的元素
        int index = getIndex(blockArr,arr,number);

        //打印一下
        System.out.println(index);



    }

    //利用分块查找的原理,查询number的索引
    private static int getIndex(Block[] blockArr, int[] arr, int number) {
        //1.确定number是在那一块当中
        int indexBlock = findIndexBlock(blockArr, number);

        if(indexBlock == -1){
            //表示number不在数组当中
            return -1;
        }

        //2.获取这一块的起始索引和结束索引   --- 30
        // Block b1 = new Block(21,0,5);   ----  0
        // Block b2 = new Block(45,6,11);  ----  1
        // Block b3 = new Block(73,12,17); ----  2
        int startIndex = blockArr[indexBlock].getStartIndex();
        int endIndex = blockArr[indexBlock].getEndIndex();

        //3.遍历
        for (int i = startIndex; i <= endIndex; i++) {
            if(arr[i] == number){
                return i;
            }
        }
        return -1;
    }


    //定义一个方法,用来确定number在哪一块当中
    public static int findIndexBlock(Block[] blockArr,int number){ //100


        //从0索引开始遍历blockArr,如果number小于max,那么就表示number是在这一块当中的
        for (int i = 0; i < blockArr.length; i++) {
            if(number <= blockArr[i].getMax()){
                return i;
            }
        }
        return -1;
    }



}

class Block{
    private int max;//最大值
    private int startIndex;//起始索引
    private int endIndex;//结束索引


    public Block() {
    }

    public Block(int max, int startIndex, int endIndex) {
        this.max = max;
        this.startIndex = startIndex;
        this.endIndex = endIndex;
    }

    /**
     * 获取
     * @return max
     */
    public int getMax() {
        return max;
    }

    /**
     * 设置
     * @param max
     */
    public void setMax(int max) {
        this.max = max;
    }

    /**
     * 获取
     * @return startIndex
     */
    public int getStartIndex() {
        return startIndex;
    }

    /**
     * 设置
     * @param startIndex
     */
    public void setStartIndex(int startIndex) {
        this.startIndex = startIndex;
    }

    /**
     * 获取
     * @return endIndex
     */
    public int getEndIndex() {
        return endIndex;
    }

    /**
     * 设置
     * @param endIndex
     */
    public void setEndIndex(int endIndex) {
        this.endIndex = endIndex;
    }

    public String toString() {
        return "Block{max = " + max + ", startIndex = " + startIndex + ", endIndex = " + endIndex + "}";
    }
}

常见排序算法:

1. 冒泡排序

冒泡排序(Bubble Sort)也是一种简单直观的排序算法。

它重复的遍历过要排序的数列,一次比较相邻的两个元素,如果他们的顺序错误就把他们交换过来。

这个算法的名字由来是因为越大的元素会经由交换慢慢"浮"到最后面。

当然,大家可以按照从大到小的方式进行排列。

1.1 算法步骤

  1. 相邻的元素两两比较,大的放右边,小的放左边
  2. 第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推
  3. 如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以

1.2 动图演示

冒泡

1.3 代码示例

package com.iflytek.day18;

public class A01_BubbleDemo {
    public static void main(String[] args) {
        /*
            冒泡排序:
            核心思想:
            1,相邻的元素两两比较,大的放右边,小的放左边。
            2,第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推。
            3,如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以。
        */


        //1.定义数组
        int[] arr = {2, 4, 5, 3, 1};

        //2.利用冒泡排序将数组中的数据变成 1 2 3 4 5

        //外循环:表示我要执行多少轮。 如果有n个数据,那么执行n - 1 轮
        for (int i = 0; i < arr.length - 1; i++) {
            //内循环:每一轮中我如何比较数据并找到当前的最大值
            //-1:为了防止索引越界
            //-i:提高效率,每一轮执行的次数应该比上一轮少一次。
            for (int j = 0; j < arr.length - 1 - i; j++) {
                //i 依次表示数组中的每一个索引:0 1 2 3 4
                if(arr[j] > arr[j + 1]){
                    int temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }
        }

        printArr(arr);




    }

    private static void printArr(int[] arr) {
        //3.遍历数组
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }
}

2. 选择排序

2.1 算法步骤

  1. 从0索引开始,跟后面的元素一一比较
  2. 小的放前面,大的放后面
  3. 第一次循环结束后,最小的数据已经确定
  4. 第二次循环从1索引开始以此类推
  5. 第三轮循环从2索引开始以此类推
  6. 第四轮循环从3索引开始以此类推。

2.2 动图演示

选择排序

public class A02_SelectionDemo {
    public static void main(String[] args) {

        /*
            选择排序:
                1,从0索引开始,跟后面的元素一一比较。
                2,小的放前面,大的放后面。
                3,第一次循环结束后,最小的数据已经确定。
                4,第二次循环从1索引开始以此类推。

         */


        //1.定义数组
        int[] arr = {2, 4, 5, 3, 1};


        //2.利用选择排序让数组变成 1 2 3 4 5
       /* //第一轮:
        //从0索引开始,跟后面的元素一一比较。
        for (int i = 0 + 1; i < arr.length; i++) {
            //拿着0索引跟后面的数据进行比较
            if(arr[0] > arr[i]){
                int temp = arr[0];
                arr[0] = arr[i];
                arr[i] = temp;
            }
        }*/

        //最终代码:
        //外循环:几轮
        //i:表示这一轮中,我拿着哪个索引上的数据跟后面的数据进行比较并交换
        for (int i = 0; i < arr.length -1; i++) {
            //内循环:每一轮我要干什么事情?
            //拿着i跟i后面的数据进行比较交换
            for (int j = i + 1; j < arr.length; j++) {
                if(arr[i] > arr[j]){
                    int temp = arr[i];
                    arr[i] = arr[j];
                    arr[j] = temp;
                }
            }
        }


        printArr(arr);


    }
    private static void printArr(int[] arr) {
        //3.遍历数组
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }

}

3. 插入排序

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过创建有序序列和无序序列,然后再遍历无序序列得到里面每一个数字,把每一个数字插入到有序序列中正确的位置。

插入排序在插入的时候,有优化算法,在遍历有序序列找正确位置时,可以采取二分查找

3.1 算法步骤

将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。

遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。

N的范围:0~最大索引

3.2 动图演示

插入排序

package com.iflytek.day18;


public class A03_InsertDemo {
    public static void main(String[] args) {
        /*
            插入排序:
                将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。
                遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。
                N的范围:0~最大索引

        */
        int[] arr = {3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48};

        //1.找到无序的哪一组数组是从哪个索引开始的。  2
        int startIndex = -1;
        for (int i = 0; i < arr.length; i++) {
            if(arr[i] > arr[i + 1]){
                startIndex = i + 1;
                break;
            }
        }

        //2.遍历从startIndex开始到最后一个元素,依次得到无序的哪一组数据中的每一个元素
        for (int i = startIndex; i < arr.length; i++) {
            //问题:如何把遍历到的数据,插入到前面有序的这一组当中

            //记录当前要插入数据的索引
            int j = i;

            while(j > 0 && arr[j] < arr[j - 1]){
                //交换位置
                int temp = arr[j];
                arr[j] = arr[j - 1];
                arr[j - 1] = temp;
                j--;
            }

        }
        printArr(arr);
    }

    private static void printArr(int[] arr) {
        //3.遍历数组
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }

}

4. 快速排序

快速排序是由东尼·霍尔所发展的一种排序算法。

快速排序又是一种分而治之思想在排序算法上的典型应用。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!

它是处理大数据最快的排序算法之一了。

4.1 算法步骤

  1. 从数列中挑出一个元素,一般都是左边第一个数字,称为 “基准数”;
  2. 创建两个指针,一个从前往后走,一个从后往前走。
  3. 先执行后面的指针,找出第一个比基准数小的数字
  4. 再执行前面的指针,找出第一个比基准数大的数字
  5. 交换两个指针指向的数字
  6. 直到两个指针相遇
  7. 将基准数跟指针指向位置的数字交换位置,称之为:基准数归位。
  8. 第一轮结束之后,基准数左边的数字都是比基准数小的,基准数右边的数字都是比基准数大的。
  9. 把基准数左边看做一个序列,把基准数右边看做一个序列,按照刚刚的规则递归排序

4.2 动图演示

快速排序

package com.iflytek.day18;

import java.util.Arrays;

public class A05_QuickSortDemo {
   public static void main(String[] args) {
       System.out.println(Integer.MAX_VALUE);
       System.out.println(Integer.MIN_VALUE);
     /*
       快速排序:
           第一轮:以0索引的数字为基准数,确定基准数在数组中正确的位置。
           比基准数小的全部在左边,比基准数大的全部在右边。
           后面以此类推。
     */

       int[] arr = {1,1, 6, 2, 7, 9, 3, 4, 5, 1,10, 8};


       //int[] arr = new int[1000000];

      /* Random r = new Random();
       for (int i = 0; i < arr.length; i++) {
           arr[i] = r.nextInt();
       }*/


       long start = System.currentTimeMillis();
       quickSort(arr, 0, arr.length - 1);
       long end = System.currentTimeMillis();

       System.out.println(end - start);//149

       System.out.println(Arrays.toString(arr));
       //课堂练习:
       //我们可以利用相同的办法去测试一下,选择排序,冒泡排序以及插入排序运行的效率
       //得到一个结论:快速排序真的非常快。

      /* for (int i = 0; i < arr.length; i++) {
           System.out.print(arr[i] + " ");
       }*/

   }


   /*
    *   参数一:我们要排序的数组
    *   参数二:要排序数组的起始索引
    *   参数三:要排序数组的结束索引
    * */
   public static void quickSort(int[] arr, int i, int j) {
       //定义两个变量记录要查找的范围
       int start = i;
       int end = j;

       if(start > end){
           //递归的出口
           return;
       }



       //记录基准数
       int baseNumber = arr[i];
       //利用循环找到要交换的数字
       while(start != end){
           //利用end,从后往前开始找,找比基准数小的数字
           //int[] arr = {1, 6, 2, 7, 9, 3, 4, 5, 10, 8};
           while(true){
               if(end <= start || arr[end] < baseNumber){
                   break;
               }
               end--;
           }
           System.out.println(end);
           //利用start,从前往后找,找比基准数大的数字
           while(true){
               if(end <= start || arr[start] > baseNumber){
                   break;
               }
               start++;
           }



           //把end和start指向的元素进行交换
           int temp = arr[start];
           arr[start] = arr[end];
           arr[end] = temp;
       }

       //当start和end指向了同一个元素的时候,那么上面的循环就会结束
       //表示已经找到了基准数在数组中应存入的位置
       //基准数归位
       //就是拿着这个范围中的第一个数字,跟start指向的元素进行交换
       int temp = arr[i];
       arr[i] = arr[start];
       arr[start] = temp;

       //确定6左边的范围,重复刚刚所做的事情
       quickSort(arr,i,start - 1);
       //确定6右边的范围,重复刚刚所做的事情
       quickSort(arr,start + 1,j);

   }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/532633.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023年5月北京/南京/西安/深圳DAMA-CDGA/CDGP数据治理认证报名

6月18日DAMA-CDGA/CDGP数据治理认证考试开放报名中&#xff01; 考试开放地区&#xff1a;北京、上海、广州、深圳、长沙、呼和浩特、杭州、南京、济南、成都、西安。其他地区凑人数中… DAMA-CDGA/CDGP数据治理认证班进行中&#xff0c;报名从速&#xff01; DAMA认证为数据管…

ARM-处理器模式(二)

文章目录 ARM 处理器模式工作模式模式切换内核寄存器R13_modeR14_modePC 各个模式对应的内核寄存器模式切换代码实现使用 mrs/msr 指令使用 cps 指令 ARM 处理器模式 ARMv7-a 处理器共有 9 种工作模式 工作模式 User&#xff1a;用户模式&#xff0c;非特权模式&#xff0c;大…

如果你想申请国家级高新技术企业

你必须首先满足国家支持的八大高新技术领域&#xff1a; 一、电子信息 二、生物学与新医学 三、航空航天 四、新材料 五、高科技服务业 六、新能源与节能 七。资源与环境 八、先进制造和自动化 如果您满足这八个领域中的一个&#xff0c;您就有资格申请高新技术企业。 …

有了 IP 地址,为什么还要用 MAC 地址?

MAC地址等价于快递包裹上的收件人姓名。 MAC地址更多是用于确认对方信息而存在的。就如同快递跨越几个城市来到你面前&#xff0c;快递员需要和你确认一下收件人是否正确&#xff0c;才会把包裹交给你一样。 IP66在线查IP地址位置&#xff1a;https://www.ip66.net/?utm-sour…

Bean基础配置?实例化方式?生命周期?

文章目录 1 bean基础配置1.1 bean基础配置(id与class) 1 bean基础配置1.1 bean基础配置(id与class)1.2 bean的name属性1.2 bean的name属性步骤1&#xff1a;配置别名步骤2: 根据名称容器中获取bean对象步骤3: 运行程序 1.3 bean作用范围scope配置(单例/非单例)1.3.1 验证IOC容器…

案例8:Java交易商城网站设计与实现开题报告

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

如何判断自己是否适合做项目管理?

如何转做项目管理&#xff1f;如何判断自己是否适合做项目管理&#xff1f;我们可以从项目管理的思维、能力、工具、书籍阅读四个方面入手—— 1.项目管理的思维 &#xff08;1&#xff09;系统思考 项目管理需要从一个系统的角度来看待问题&#xff0c;将复杂的项目分解为小…

CAD功能库CAD DLL v15 2023最新上线!改进3D格式文件

CAD DLL是一个为开发者打造的新版本CAD库&#xff0c;可在支持动态链接库技术的语言中添加CAD功能到应用程序中。 很高兴与大家分享&#xff0c;CAD Dll迎来了久违的更新&#xff0c;更新至v15&#xff0c;3D改进&#xff0c;还改进了 DWG 和 DXF 格式的导入&#xff0c;除此之…

商场地图怎么画最简单?商场导视图怎么做?

商场购物中心超大的经营规模能为广大顾客提供购物选择的同时&#xff0c;也面临着许多问题&#xff1a;购物体验差&#xff0c;顾客到店率低。以及数据缺失&#xff0c;无法为商家做营销决策提供依据等等&#xff0c;那么&#xff0c;如何快速提升商场店铺运营效果&#xff0c;…

指定日本|在读博士生获CSC资助赴日本全球环境战略研究所联合培养

R同学的学术背景较弱&#xff0c;虽参与过导师的项目&#xff0c;但自己没有相关文章发表。拟申请CSC联培项目&#xff0c;研究方向为农业经济可持续发展&#xff0c;指定日本并希望合作导师的研究与此相关联。最终我们用日本全球环境战略研究所&#xff08;IGES&#xff09;的…

关于多维图形在2D平面投影的个人理解

网上有很多关于多维空间的描述&#xff0c;这里分享一下我的个人理解 假设在二维空间中有两个图形&#xff0c;三角形、四边形&#xff0c;画面如下 以如下规律在三维空间展开 对于三角形&#xff0c;在三维空间中添加一点&#xff0c;和其连接&#xff0c;使得每个面都为三角…

盘点国产BI软件中,那些电商数据分析功能

老牌国产BI软件基本都是适用于所有行业&#xff0c;会为各行各业的提供智能数据可视化分析功能板块&#xff0c;那么&#xff0c;老牌国产BI软件之一的奥威BI软件又为电商数据分析提供了哪些功能板块&#xff0c;效果怎样&#xff1f; 1、提供标准化跨境电商分析方案 这套跨境…

高通Android 11 audio:音频服务创建以及播放的流程

1、音频服务初始化流程 当前版本:高通 Android 11 大致的创建流程如下: 经过上面的流程系统音频服务已经启动处于待命状态,如果有应用需要播放则会通过服务最终选择合适的硬件将声音播出,接下来按照上面的流程进行进一步的细分。 1.1 开机启动音频服务 音频服务在frame…

110. 平衡二叉树

110. 平衡二叉树 C代码&#xff1a;DFS int dfs (struct TreeNode* root) {if (NULL root) {return 0;}int leftDepth dfs(root->left);int rightDepth dfs(root->right);if (fabs(leftDepth - rightDepth) > 1 || leftDepth -1 || rightDepth -1) {return -1;}…

云端炼丹,算力白嫖,基于云端GPU(Colab)使用So-vits库制作AI特朗普演唱《国际歌》

人工智能AI技术早已深入到人们生活的每一个角落&#xff0c;君不见AI孙燕姿的歌声此起彼伏&#xff0c;不绝于耳&#xff0c;但并不是每个人都拥有一块N卡&#xff0c;没有GPU的日子总是不好过的&#xff0c;但是没关系&#xff0c;山人有妙计&#xff0c;本次我们基于Google的…

程序设计进阶模拟考试选择判断

选择 1 若有以下说明和语句 int c[4][5],(p)[5]; pC; 能够正确引用c数组元素的是 A、 p 1 B、(p3) C、*(p1)3 D、 *(p[0]2) . 题意分析 1.声明了一个二维数组 c&#xff0c;其中有四个一维数组&#xff0c;每个一维数组包含五个整数。 2.在C语言中&#xff0c;(*p)[5] 表示一个…

加速信创生态建设布局,亿美软通实现与达梦数据、东方通兼容互认

近日&#xff0c;亿美软通自主研发的“亿美软通融合通信平台&#xff08;EUMP)”分别与达梦数据库管理系统和东方通软件完成兼容性认证测试&#xff0c;并签署产品兼容互认证明。经多方测试表明&#xff0c;亿美软通融合通信平台与达梦数据库管理系统V8、东方通分布式数据缓存中…

GD32F303ZET6(STM32),使用外部中断,接连进入中断的问题

使用引脚 PC9,开启外部中断EXTI9_5_IRQHandler。 if(EXTI_GetITStatus(EXTI_Line9) ! RESET){//反转中断 mmmm; EXTI_ClearITPendingBit(EXTI_Line9); } 每次进外部中断&#xff0c;mmmm这个值有时显示正常&#xff0c;每点动按钮&…

使用Eclipse 进行远程 Debug 调试

Eclipse远程调试 Java自身支持调试功能&#xff0c;并提供了一个简单的调试工具&#xff0d;&#xff0d;JDB&#xff0c;类似于功能强大的GDB&#xff0c;JDB也是一个字符界面的调试环境&#xff0c;并支持设置断点&#xff0c;支持线程线级的调试。 由于部署环境的差异性&am…

详解《基于 javascript 的流程图编辑框架LogicFlow》

1、LogicFlow 是什么 LogicFlow 是一款流程图编辑框架&#xff0c;提供了一系列流程图交互、编辑所必需的功能和灵活的节点自定义、插件等拓展机制。LogicFlow 支持前端研发自定义开发各种逻辑编排场景&#xff0c;如流程图、ER 图、BPMN 流程等。在工作审批配置、机器人逻辑编…