Prompt工程师指南[资料整合篇]:Prompt最新前沿论文整理合集、工具和库推荐、数据集整合、推荐阅读内容等,超全面资料

news2024/12/24 22:11:04

Prompt工程师指南[资料整合篇]:Prompt最新前沿论文整理合集、工具和库推荐、数据集整合、推荐阅读内容等,超全面资料

在这里插入图片描述

1.论文合集

The following are the latest papers (sorted by release date) on prompt engineering. We update this on a daily basis and new papers come in. We incorporate summaries of these papers to the guides above every week.

1.1概述类Overviews

  • Augmented Language Models: a Survey (Feb 2023)
  • A Survey for In-context Learning (Dec 2022)
  • Towards Reasoning in Large Language Models: A Survey (Dec 2022)
  • Reasoning with Language Model Prompting: A Survey (Dec 2022)
  • Emergent Abilities of Large Language Models (Jun 2022)
  • A Taxonomy of Prompt Modifiers for Text-To-Image Generation (Apr 2022)
  • Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing (Jul 2021)

1.2方法类Approaches

  • Model-tuning Via Prompts Makes NLP Models Adversarially Robust (Mar 2023)
  • Structure Pretraining and Prompt Tuning for Knowledge Graph Transfer (March 2023)
  • CoTEVer: Chain of Thought Prompting Annotation Toolkit for Explanation Verification (March 2023)
  • Larger language models do in-context learning differently (March 2023)
  • OpenICL: An Open-Source Framework for In-context Learning (March 2023)
  • Dynamic Prompting: A Unified Framework for Prompt Tuning (March 2023)
  • Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning (March 2023)
  • Effectiveness of Data Augmentation for Prefix Tuning with Limited Data (March 2023)
  • Mixture of Soft Prompts for Controllable Data Generation (March 2023)
  • Prompt, Generate, then Cache: Cascade of Foundation Models makes Strong Few-shot Learners (March 2023)
  • How Robust is GPT-3.5 to Predecessors? A Comprehensive Study on Language Understanding Tasks (March 2023)
  • Can ChatGPT Understand Too? A Comparative Study on ChatGPT and Fine-tuned BERT (Feb 2023)
  • EvoPrompting: Language Models for Code-Level Neural Architecture Search (Feb 2023)
  • In-Context Instruction Learning (Feb 2023)
  • Chain of Hindsight Aligns Language Models with Feedback (Feb 2023)
  • Language Is Not All You Need: Aligning Perception with Language Models (Feb 2023)
  • Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data (Feb 2023)
  • Active Prompting with Chain-of-Thought for Large Language Models (Feb 2023)
  • More than you’ve asked for: A Comprehensive Analysis of Novel Prompt Injection Threats to Application-Integrated Large Language Models (Feb 2023)
  • A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT (Feb 2023)
  • Guiding Large Language Models via Directional Stimulus Prompting (Feb 2023)
  • How Does In-Context Learning Help Prompt Tuning? (Feb 2023)
  • Scalable Prompt Generation for Semi-supervised Learning with Language Models (Feb 2023)
  • Bounding the Capabilities of Large Language Models in Open Text Generation with Prompt Constraints (Feb 2023)
  • À-la-carte Prompt Tuning (APT): Combining Distinct Data Via Composable Prompting (Feb 2023)
  • GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks (Feb 2023)
  • The Capacity for Moral Self-Correction in Large Language Models (Feb 2023)
  • SwitchPrompt: Learning Domain-Specific Gated Soft Prompts for Classification in Low-Resource Domains (Feb 2023)
  • Evaluating the Robustness of Discrete Prompts (Feb 2023)
  • Compositional Exemplars for In-context Learning (Feb 2023)
  • Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery (Feb 2023)
  • Multimodal Chain-of-Thought Reasoning in Language Models (Feb 2023)
  • Large Language Models Can Be Easily Distracted by Irrelevant Context (Feb 2023)
  • Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models (Feb 2023)
  • Progressive Prompts: Continual Learning for Language Models (Jan 2023)
  • Batch Prompting: Efficient Inference with LLM APIs (Jan 2023)
  • Demonstrate-Search-Predict: Composing retrieval and language models for knowledge-intensive NLP (Dec 2022)
  • On Second Thought, Let’s Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning (Dec 2022)
  • Constitutional AI: Harmlessness from AI Feedback (Dec 2022)
  • Successive Prompting for Decomposing Complex Questions (Dec 2022)
  • Large Language Models are reasoners with Self-Verification (Dec 2022)
  • Discovering Language Model Behaviors with Model-Written Evaluations (Dec 2022)
  • Structured Prompting: Scaling In-Context Learning to 1,000 Examples (Dec 2022)
  • PAL: Program-aided Language Models (Nov 2022)
  • Large Language Models Are Human-Level Prompt Engineers (Nov 2022)
  • Ignore Previous Prompt: Attack Techniques For Language Models (Nov 2022)
  • Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods (Nov 2022)
  • Teaching Algorithmic Reasoning via In-context Learning (Nov 2022)
  • Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference (Nov 2022)
  • Ask Me Anything: A simple strategy for prompting language models (Oct 2022)
  • Recitation-Augmented Language Models (Oct 2022)
  • ReAct: Synergizing Reasoning and Acting in Language Models (Oct 2022)
  • Prompting GPT-3 To Be Reliable (Oct 2022)
  • Decomposed Prompting: A Modular Approach for Solving Complex Tasks (Oct 2022)
  • Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought (Oct 2022)
  • Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples (Sep 2022)
  • Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning (Sep 2022)
  • Promptagator: Few-shot Dense Retrieval From 8 Examples (Sep 2022)
  • Atlas: Few-shot Learning with Retrieval Augmented Language Models (Nov 2022)
  • DocPrompting: Generating Code by Retrieving the Docs (July 2022)
  • On the Advance of Making Language Models Better Reasoners (June 2022)
  • Large Language Models are Zero-Shot Reasoners (May 2022)
  • Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations (May 2022)
  • MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (May 2022)
  • PPT: Pre-trained Prompt Tuning for Few-shot Learning (Mqy 2022)
  • Toxicity Detection with Generative Prompt-based Inference (May 2022)
  • Learning to Transfer Prompts for Text Generation (May 2022)
  • The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning (May 2022)
  • A Taxonomy of Prompt Modifiers for Text-To-Image Generation (Apr 2022)
  • PromptChainer: Chaining Large Language Model Prompts through Visual Programming (Mar 2022)
  • Self-Consistency Improves Chain of Thought Reasoning in Language Models (March 2022)
  • Training language models to follow instructions with human feedback
  • Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? (Feb 2022)
  • Chain of Thought Prompting Elicits Reasoning in Large Language Models (Jan 2022)
  • Show Your Work: Scratchpads for Intermediate Computation with Language Models (Nov 2021)
  • AI Chains: Transparent and Controllable Human-AI Interaction by Chaining Large Language Model Prompts (Oct 2021)
  • Generated Knowledge Prompting for Commonsense Reasoning (Oct 2021)
  • Multitask Prompted Training Enables Zero-Shot Task Generalization (Oct 2021)
  • Reframing Instructional Prompts to GPTk’s Language (Sep 2021)
  • Design Guidelines for Prompt Engineering Text-to-Image Generative Models (Sep 2021)
  • Making Pre-trained Language Models Better Few-shot Learners (Aug 2021)
  • Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity (April 2021)
  • BERTese: Learning to Speak to BERT (April 2021)
  • The Power of Scale for Parameter-Efficient Prompt Tuning (April 2021)
  • Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm (Feb 2021)
  • Calibrate Before Use: Improving Few-Shot Performance of Language Models (Feb 2021)
  • Prefix-Tuning: Optimizing Continuous Prompts for Generation (Jan 2021)
  • Learning to Generate Task-Specific Adapters from Task Description (Jan 2021)
  • Making Pre-trained Language Models Better Few-shot Learners (Dec 2020)
  • Learning from Task Descriptions (Nov 2020)
  • AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts (Oct 2020)
  • Language Models are Few-Shot Learners (May 2020)
  • How Can We Know What Language Models Know? (July 2020)

1.3应用Applications

  • Can Generative Pre-trained Transformers (GPT) Pass Assessments in Higher Education Programming Courses? (Mar 2023)
  • SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models (Mar 2023)
  • ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for Document Information Extraction (March 2023)
  • MathPrompter: Mathematical Reasoning using Large Language Models (March 2023)
  • Prompt-Based Learning for Thread Structure Prediction in Cybersecurity Forums (March 2023)
  • Choice Over Control: How Users Write with Large Language Models using Diegetic and Non-Diegetic Prompting (March 2023)
  • Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering (March 2023)
  • Soft Prompt Guided Joint Learning for Cross-Domain Sentiment Analysis (March 2023)
  • SpeechPrompt v2: Prompt Tuning for Speech Classification Tasks (March 2023)
  • Goal Driven Discovery of Distributional Differences via Language Descriptions (Feb 2023)
  • Navigating the Grey Area: Expressions of Overconfidence and Uncertainty in Language Models (Feb 2023)
  • TabGenie: A Toolkit for Table-to-Text Generation (Feb 2023)
  • SGL-PT: A Strong Graph Learner with Graph Prompt Tuning (Feb 2023)
  • Few-Shot Table-to-Text Generation with Prompt-based Adapter (Feb 2023)
  • Language Models Are Few-shot Learners for Prognostic Prediction (Feb 2023)
  • STA: Self-controlled Text Augmentation for Improving Text Classifications (Feb 2023)
  • Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback (Feb 2023)
  • How Generative AI models such as ChatGPT can be (Mis)Used in SPC Practice, Education, and Research? An Exploratory Study (Feb 2023)
  • Grimm in Wonderland: Prompt Engineering with Midjourney to Illustrate Fairytales (Feb 2023)
  • LabelPrompt: Effective Prompt-based Learning for Relation Classification (Feb 2023)
  • Language Model Crossover: Variation through Few-Shot Prompting (Feb 2023)
  • Prompt Tuning of Deep Neural Networks for Speaker-adaptive Visual Speech Recognition (Feb 2023)
  • The Capacity for Moral Self-Correction in Large Language Models (Feb 2023)
  • Prompting for Multimodal Hateful Meme Classification (Feb 2023)
  • PLACES: Prompting Language Models for Social Conversation Synthesis (Feb 2023)
  • Commonsense-Aware Prompting for Controllable Empathetic Dialogue Generation (Feb 2023)
  • Crawling the Internal Knowledge-Base of Language Models (Jan 2023)
  • Legal Prompt Engineering for Multilingual Legal Judgement Prediction (Dec 2022)
  • Investigating Prompt Engineering in Diffusion Models (Nov 2022)
  • Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering (Sep 2022)
  • Conversing with Copilot: Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language (Oct 2022)
  • Piloting Copilot and Codex: Hot Temperature, Cold Prompts, or Black Magic? (Oct 2022)
  • Plot Writing From Scratch Pre-Trained Language Models (July 2022)

1.4 合集类Collections

  • Chain-of-Thought Papers
  • Papers with Code
  • Prompt Papers

2.prompt工具和库

  • AI Test Kitchen
  • betterprompt
  • ClickPrompt
  • DreamStudio
  • DUST
  • Dyno
  • EmergentMind
  • EveryPrompt
  • GPT Index
  • GPTTools
  • hwchase17/adversarial-prompts
  • Interactive Composition Explorer
  • LangChain
  • Lexica
  • loom
  • Metaprompt
  • OpenAI Playground
  • OpenICL
  • OpenPrompt
  • OpenPlayground
  • Playground
  • Prodia
  • Prompt Base
  • Prompt Engine
  • Prompt Generator for OpenAI’s DALL-E 2
  • Promptable
  • PromptInject
  • Prompts.ai
  • PromptPerfect
  • Promptly
  • PromptSource
  • Promptist
  • Scale SpellBook
  • sharegpt
  • ThoughtSource
  • Visual Prompt Builder

3.数据集

  • Anthropic’s Red Team dataset, (paper)
  • Awesome ChatGPT Prompts
  • DiffusionDB
  • Midjourney Prompts
  • P3 - Public Pool of Prompts
  • PartiPrompts
  • Real Toxicity Prompts
  • Stable Diffusion Dataset
  • WritingPrompts

推荐读物

  • 3 Principles for prompt engineering with GPT-3
  • A beginner-friendly guide to generative language models - LaMBDA guide
  • A Complete Introduction to Prompt Engineering for Large Language Models
  • A Generic Framework for ChatGPT Prompt Engineering
  • An SEO’s guide to ChatGPT prompts
  • AI Content Generation
  • AI’s rise generates new job title: Prompt engineer
  • Awesome ChatGPT Prompts
  • Best 100+ Stable Diffusion Prompts
  • Best practices for prompt engineering with OpenAI API
  • Building GPT-3 applications — beyond the prompt
  • Can AI really be protected from text-based attacks?
  • ChatGPT, AI and GPT-3 Apps and use cases
  • ChatGPT Prompts
  • CMU Advanced NLP 2022: Prompting
  • Common Sense as Dark Matter - Yejin Choi | Stanford MLSys #78
  • Curtis64’s set of prompt gists
  • DALL·E 2 Prompt Engineering Guide
  • DALL·E 2 Preview - Risks and Limitations
  • DALLE Prompt Book
  • DALL-E, Make Me Another Picasso, Please
  • Diffusion Models: A Practical Guide
  • Exploiting GPT-3 Prompts
  • Exploring Prompt Injection Attacks
  • Extrapolating to Unnatural Language Processing with GPT-3’s In-context Learning: The Good, the Bad, and the Mysterious
  • Generative AI with Cohere: Part 1 - Model Prompting
  • Get a Load of This New Job: “Prompt Engineers” Who Act as Psychologists to AI Chatbots
  • Giving GPT-3 a Turing Test
  • GPT-3 & Beyond
  • GPT3 and Prompts: A quick primer
  • Hands-on with Bing’s new ChatGPT-like features
  • How to Draw Anything
  • How to get images that don’t suck
  • How to make LLMs say true things
  • How to perfect your prompt writing for AI generators
  • How to write good prompts
  • If I Was Starting Prompt Engineering in 2023: My 8 Insider Tips
  • Indirect Prompt Injection on Bing Chat
  • Interactive guide to GPT-3 prompt parameters
  • Introduction to Reinforcement Learning with Human Feedback
  • In defense of prompt engineering
  • JailBreaking ChatGPT: Everything You Need to Know
  • Language Models and Prompt Engineering: Systematic Survey of Prompting Methods in NLP
  • Learn Prompting
  • Methods of prompt programming
  • Mysteries of mode collapse
  • NLP for Text-to-Image Generators: Prompt Analysis
  • NLP with Deep Learning CS224N/Ling284 - Lecture 11: Promting, Instruction Tuning, and RLHF
  • Notes for Prompt Engineering by sw-yx
  • OpenAI Cookbook
  • OpenAI Prompt Examples for several applications
  • Pretrain, Prompt, Predict - A New Paradigm for NLP
  • Prompt Engineer: Tech’s hottest job title?
  • Prompt Engineering 101 - Introduction and resources
  • Prompt Engineering 101: Autocomplete, Zero-shot, One-shot, and Few-shot prompting
  • Prompt Engineering 101
  • Prompt Engineering - A new profession ?
  • Prompt Engineering by co:here
  • Prompt Engineering by Microsoft
  • Prompt Engineering: The Career of Future
  • Prompt engineering davinci-003 on our own docs for automated support (Part I)
  • Prompt Engineering Guide: How to Engineer the Perfect Prompts
  • Prompt Engineering in GPT-3
  • Prompt Engineering Template
  • Prompt Engineering Topic by GitHub
  • Prompt Engineering: The Ultimate Guide 2023 [GPT-3 & ChatGPT]
  • Prompt Engineering: From Words to Art
  • Prompt Engineering with OpenAI’s GPT-3 and other LLMs
  • Prompt injection attacks against GPT-3
  • Prompt injection to read out the secret OpenAI API key
  • Prompting: Better Ways of Using Language Models for NLP Tasks
  • Prompting for Few-shot Learning
  • Prompting in NLP: Prompt-based zero-shot learning
  • Prompting Methods with Language Models and Their Applications to Weak Supervision
  • Prompts as Programming by Gwern
  • Reverse Prompt Engineering for Fun and (no) Profit
  • So you want to be a prompt engineer: Critical careers of the future
  • Simulators
  • Start with an Instruction
  • Talking to machines: prompt engineering & injection
  • Tech’s hottest new job: AI whisperer. No coding required
  • The Book - Fed Honeypot
  • The ChatGPT Prompt Book
  • The ChatGPT list of lists: A collection of 3000+ prompts, examples, use-cases, tools, APIs, extensions, fails and other resources
  • The Most Important Job Skill of This Century
  • The Mirror of Language
  • The Waluigi Effect (mega-post)
  • Thoughts and impressions of AI-assisted search from Bing
  • Unleash Your Creativity with Generative AI: Learn How to Build Innovative Products!
  • Unlocking Creativity with Prompt Engineering
  • Using GPT-Eliezer against ChatGPT Jailbreaking
  • What Is ChatGPT Doing … and Why Does It Work?
  • Why is ChatGPT so good?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/531392.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ozeki VOIP SIP SDK 10.3.199 Crack

Ozeki VOIP SIP SDK 使用Ozeki VoIP SIP SDK,您有机会制作自己的VoIP产品,例如软电话,甚至您自己的PBX。 Ozeki VoIP SIP SDK介绍 Ozeki VoIP SIP SDK 是一个软件开发工具包,允许您使用 SIP 协议进行 VoIP 呼叫。它可以很容易地…

LNMP平台对接redis服务

LNMP见我2023-04-17 10:51:16 发布的企业网站架构部署与优化 LNMP https://blog.csdn.net/Richard_Sniper/article/details/130158518?spm1001.2014.3001.5501 1、安装 LNMP 各个组件 2、安装 redis 服务 3、安装 redis 扩展 官网:http://redis.io/ 下载包&am…

解读直接RF采样架构及优势

多年来,数字收发机被应用在多种类型的应用中,包括地面蜂窝网络、卫星通信和基于雷达的监视、地球观测和监控。过去,收发机的系统工程师在这些应用中使用中频架构。现在,高速数据转换器的最新发展,使新型基于射频直接采…

gif怎么转换成mp4格式?

gif怎么转换成mp4格式?GIF动态图片是一种常见的图片文件,平时我们聊天时会使用到表情包、广告宣传场景也会使用到gif动图,而MP4则是目前广泛应用的视频格式,相信大家都知道这一点。将GIF图片转换为视频格式是一种非常实用的方法。…

SpringCloud实用篇02

文章目录 SpringCloud实用篇020.学习目标1.Nacos配置管理1.1.统一配置管理1.1.1.在nacos中添加配置文件1.1.2.从微服务拉取配置 1.2.配置热更新1.2.1.方式一1.2.2.方式二 1.3.配置共享1)添加一个环境共享配置2)在user-service中读取共享配置3&#xff09…

选择无论文答辩硕士,那只能选择免联考双证中国人民大学与加拿大女王大学金融硕士

硕士的论文和答辩是一种检验硕士阶段的学习研究成果的一种方式,通过答辩可以让老师清楚的了解论文的价值所在。但从选题背景、研究意义到研究思路、理论基础、研究方法再到关键技术点、实践难点等等,这一个复杂的过程让很多考生在最后这一关被淘汰出局。…

咚咚咚,穷人版生产力工具,好用到飞起

每个程序员都有自己的生产力工具,不管你是深耕职场多年的老鸟,还是在学校努力学习的小鸟,应该都有自己囊里私藏的好辅助。比如帮你完成从头脑风暴草图到创建线框图/原型的UI工具,让代码规范和交付更为可靠的版本控制工具等等。 今…

23种设计模式的必备结构图

这里总结了23种设计模式的结构图及定义,样例代码在 Github:studeyang/design-pattern。 一、创建型模式 1.1 简单工厂模式 1.2 工厂方法模式 工厂方法模式,定义一个用于创建对象的接口,让子类决定实例化哪一个类。工厂方法使一…

metaRTC6.0 janus推流操作指南

概要 Janus 是一个非常有名的 WebRTC 流媒体服务器,它是以 Linux 风格编写的服务程序,采用 C 语言实现,Janus 提供插件机制来支持不同的业务逻辑,配合官方自带插件就可以用来实现高效的webRTC Server服务。 metaRTC6.0新版本支持向janus推流…

【国内某组态软件和plc的通信漏洞挖掘】

因为已从原单位离职,复现的环境也已经丢失,再加上也没怎么提交过漏洞,导致上传cnvd失败,故发在此处,万一有用的话,有缘人可自行提交漏洞库。 (一) 环境 组态软件IP地址&#xff1a…

freemark模板导出word-01-简单文本内容

在一些项目中,会遇到导出固定格式的word文档,这个时候我们可以使用模板freemarker来实现,本文先分享简单的字符串填充。 比如现在有一个word模板的样式如下 我们填充好内容后(重点坑点:先采用记事本类似的将${A1}编辑好&#xff…

简易画笔效果

使用代码创建纯白图片,图片大小要与image组件大小相同 使用OnDrag触摸的时候将触摸点周围的像素都改为透明 使用shader判断两张图,只要有一张图像素点透明的地方就都透明 shader代码 Shader "Hidden/Draw" {Properties{_MainTex ("Textu…

少儿编程 中国电子学会图形化编程等级考试Scratch编程二级真题解析(判断题)2023年3月

2023年3月scratch编程等级考试二级真题 判断题(共10题,每题2分,共20分) 26、执行完这段程序后,可以在舞台上画出一个正方形 答案:错 考点分析:考查积木综合使用,重点考查画笔积木的使用,从程序中可以看出落笔是在最后,所以在落笔之前绘制的图形是不会显示出来,没…

机器学习服务语音合成,解锁智能养娃新趋势

从翻阅图书绘本到捧着电子书,再到点开手机里的音频APP,随着“互联网阅读”的逐步深入,儿童有声读物越来越受95后父母的欢迎,它的出现令年轻父母摆脱了为孩子讲故事的辛苦,而且有声读物配音发音更加标准,有助…

每日学术速递5.15

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.CL 1.Not All Languages Are Created Equal in LLMs: Improving Multilingual Capability by Cross-Lingual-Thought Prompting 标题:并非所有语言在 LLM 中都是平等的&#…

直流电机 PID 控制系统仿真研究(Simulink实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

openGauss数据库3.0.0升级5.0.0操作实践

文章目录 1.1 前言1.2 升级须知升级流程升级方式升级约束 1.3 升级前准备1.4 升级操作1.5 升级验证1.6 提交升级 1.1 前言 openGauss是一款开源关系型数据库管理系统,采用木兰宽松许可证v2发行。之前基于3.0.0版本进行了一些实践,本篇就详细介绍如何将o…

Win7/Win10/Win11系统怎么显示文件后缀

在不同版本的Windows系统中,如Win7/Win10/Win11,显示文件的后缀名可能会有所不同。为了方便用户在进行文件管理时更加方便和高效,本文整理了Win7/Win10/Win11系统中显示文件后缀的具体方法,希望能帮助大家更加轻松地管理自己的文件…

展会进行时!5月16-18日箱讯与您相约中国航交会

宁波国际会展中心7、8号馆 第五届中国(宁波)国际航运物流交易会 暨2023全球物流企业合作博览会 火爆进行中 箱讯与您相约 8号馆 C033K-C036展位 期待您的光临! 2023年5月16-18日,第五届中国(宁波)国际…

Grafana系列-统一展示-11-Logs Traces无缝跳转

系列文章 Grafana 系列文章 概述 如前文 Grafana 系列 - 统一展示 -1- 开篇所述, Grafana 可以了解所有相关的数据--以及它们之间的关系--对于尽快根治事件和确定意外系统行为的真正来源非常重要。Grafana 允许团队在一个地方对所有的数据进行无缝的可视化和跳转。 最典型的…