使用Flink MySQL cdc分别sink到ES、Kafka、Hudi

news2025/1/18 9:09:33

环境说明

  • [flink-1.13.1-bin-scala_2.11.tgz](https://archive.apache.org/dist/flink/flink-1.13.1/flink-1.13.1-bin-scala_2.11.tgz)
  • [hadoop-2.7.3.tar.gz](https://archive.apache.org/dist/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz)
  • [flink-cdc-connectors](https://github.com/ververica/flink-cdc-connectors)(git clone源码编译)
  • [hudi](https://github.com/apache/hudi)(git clone源码编译)
  • [spark-2.4.8-bin-hadoop2.7.tgz](https://archive.apache.org/dist/spark/spark-2.4.8/spark-2.4.8-bin-hadoop2.7.tgz)
  • scala-2.11
  • oracle jdk-1.8.x

 版本问题

flink cdc与flink对应版本

https://ververica.github.io/flink-cdc-connectors/master/content/about.html#supported-flink-versions

hudi与flink版本

https://github.com/apache/hudi/issues/3689

编译所需jar包

编译flink-cdc-connectors

- 进入flink-cdc-connectors目录,修改flink-cdc-connectors/pom.xml文件中flink的版本号为1.13.1

<flink.version>1.13.1</flink.version>

- maven编译

mvn clean package -DskipTests

- 编译完成,将以下jar包拷贝到flink-1.13.1/lib下

flink-cdc-connectors/flink-sql-connector-mysql-cdc/target/flink-sql-connector-mysql-cdc-2.1-SNAPSHOT.jar

flink-cdc-connectors/flink-sql-connector-postgres-cdc/target/flink-sql-connector-postgres-cdc-2.1-SNAPSHOT.jar

flink-cdc-connectors/flink-format-changelog-json/target/flink-format-changelog-json-2.1-SNAPSHOT.jar

 编译hudi

- 进入hudi目录,修改hudi/pom.xml,修改对应组件的版本,由于flink使用的是scala-2.11版本,spark3.x版本以上默认使用scala-2.12预编译,为了节省时间,我们在此使用spark2.4.8以scala-2.11预编译的版本,对应的hadoop版本为2.7

<flink.version>1.13.1</flink.version>
<hadoop.version>2.7.3</hadoop.version>
<spark2.version>2.4.8</spark2.version>

- maven编译

mvn clean package -DskipTests
 

- 编译完成,将以下jar包拷贝到flink-1.13.1/lib下

hudi/packaging/hudi-flink-bundle/target/hudi-flink-bundle_2.11-0.10.0-SNAPSHOT.jar

- 将以下jar包拷贝到spark-2.4.8-bin-hadoop2.7/jars下

hudi/packaging/hudi-spark-bundle/target/hudi-spark-bundle_2.11-0.10.0-SNAPSHOT.jar

- 将以下jar包拷贝到hadoop-2.7.3/share/hadoop/hdfs/下

hudi/packaging/hudi-hadoop-mr-bundle/target/hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar

- 另外为了把数据写入ES和kafka中,需要下载以下jar包,并拷贝到flink-1.13.1/lib下

[flink-sql-connector-elasticsearch7_2.11-1.13.1.jar](https://repo1.maven.org/maven2/org/apache/flink/flink-sql-connector-elasticsearch7_2.11/1.13.1/flink-sql-connector-elasticsearch7_2.11-1.13.1.jar)

[flink-sql-connector-kafka_2.11-1.13.1.jar](https://repo1.maven.org/maven2/org/apache/flink/flink-sql-connector-kafka_2.11/1.13.1/flink-sql-connector-kafka_2.11-1.13.1.jar)

- flink sink到hudi还需要以下jar包

[flink-shaded-hadoop-2-uber-2.7.5-10.0.jar](https://repo1.maven.org/maven2/org/apache/flink/flink-shaded-hadoop-2-uber/2.7.5-10.0/flink-shaded-hadoop-2-uber-2.7.5-10.0.jar)

- 所有依赖放置完成后的flink-1.13.1/lib如下

Docker中创建所需的组件

- 创建一个目录,创建一个新文件docker-compose.yml,内容如下,包含postgres mysql es kibana kafka zookeeper组件:


version: '2.1'
services:
  postgres:
    image: debezium/example-postgres:1.1
    ports:
      - "5432:5432"
    environment:
      - POSTGRES_PASSWORD=1234
      - POSTGRES_DB=postgres
      - POSTGRES_USER=postgres
      - POSTGRES_PASSWORD=postgres
  mysql:
    image: debezium/example-mysql:1.1
    ports:
      - "3306:3306"
    environment:
      - MYSQL_ROOT_PASSWORD=123456
      - MYSQL_USER=mysqluser
      - MYSQL_PASSWORD=mysqlpw
  elasticsearch:
    image: elastic/elasticsearch:7.6.0
    environment:
      - cluster.name=docker-cluster
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
      - discovery.type=single-node
    ports:
      - "9200:9200"
      - "9300:9300"
    ulimits:
      memlock:
        soft: -1
        hard: -1
      nofile:
        soft: 65536
        hard: 65536
  kibana:
    image: elastic/kibana:7.6.0
    ports:
      - "5601:5601"
  zookeeper:
    image: wurstmeister/zookeeper:3.4.6
    ports:
      - "2181:2181"
  kafka:
    image: wurstmeister/kafka:2.12-2.2.1
    ports:
      - "9092:9092"
      - "9094:9094"
    depends_on:
      - zookeeper
    environment:
      - KAFKA_ADVERTISED_LISTENERS=INSIDE://:9094,OUTSIDE://localhost:9092
      - KAFKA_LISTENERS=INSIDE://:9094,OUTSIDE://:9092
      - KAFKA_LISTENER_SECURITY_PROTOCOL_MAP=INSIDE:PLAINTEXT,OUTSIDE:PLAINTEXT
      - KAFKA_INTER_BROKER_LISTENER_NAME=INSIDE
      - KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181
      - KAFKA_CREATE_TOPICS="user_behavior:1:1"
    volumes:
      - /var/run/docker.sock:/var/run/docker.sock


 

- 进入目录,启动并初始化所有容器

docker-compose build
docker-compose up -d
 

- 打开docker 应用,可以看到组件已经全部启动

初始化数据

- 通过docker命令进入mysql容器内部

docker-compose exec mysql mysql -uroot -p123456
 

- 初始化MySQL数据


-- MySQL
CREATE DATABASE mydb;
USE mydb;
CREATE TABLE products (
  id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
  name VARCHAR(255) NOT NULL,
  description VARCHAR(512)
);
ALTER TABLE products AUTO_INCREMENT = 101;

INSERT INTO products
VALUES (default,"scooter","Small 2-wheel scooter"),
       (default,"car battery","12V car battery"),
       (default,"12-pack drill bits","12-pack of drill bits with sizes ranging from #40 to #3"),
       (default,"hammer","12oz carpenter's hammer"),
       (default,"hammer","14oz carpenter's hammer"),
       (default,"hammer","16oz carpenter's hammer"),
       (default,"rocks","box of assorted rocks"),
       (default,"jacket","water resistent black wind breaker"),
       (default,"spare tire","24 inch spare tire");

CREATE TABLE orders (
  order_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
  order_date DATETIME NOT NULL,
  customer_name VARCHAR(255) NOT NULL,
  price DECIMAL(10, 5) NOT NULL,
  product_id INTEGER NOT NULL,
  order_status BOOLEAN NOT NULL -- 是否下单
) AUTO_INCREMENT = 10001;

INSERT INTO orders
VALUES (default, '2020-07-30 10:08:22', 'Jark', 50.50, 102, false),
       (default, '2020-07-30 10:11:09', 'Sally', 15.00, 105, false),
       (default, '2020-07-30 12:00:30', 'Edward', 25.25, 106, false);

- 通过docker命令进入postgres容器内部

docker-compose exec postgres psql -h localhost -U postgres
 

- 初始化postgres数据

-- PG
CREATE TABLE shipments (
  shipment_id SERIAL NOT NULL PRIMARY KEY,
  order_id SERIAL NOT NULL,
  origin VARCHAR(255) NOT NULL,
  destination VARCHAR(255) NOT NULL,
  is_arrived BOOLEAN NOT NULL
);
ALTER SEQUENCE public.shipments_shipment_id_seq RESTART WITH 1001;
ALTER TABLE public.shipments REPLICA IDENTITY FULL;

INSERT INTO shipments
VALUES (default,10001,'Beijing','Shanghai',false),
       (default,10002,'Hangzhou','Shanghai',false),
       (default,10003,'Shanghai','Hangzhou',false);

修改环境变量、hadoop配置文件并启动hadoop

- 修改环境变量vim ~/.zshrc 或者 vim /etc/profile


export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8/Contents/Home
export PATH=$PATH:$JAVA_HOME/bin

export SCALA_HOME=/xxx/xxx/xxx/xxx/xxx/xxx/scala
export PATH=$PATH:$SCALA_HOME/bin

export SPARK_HOME=/xxx/xxx/xxx/xxx/xxx/xxx/spark
export PATH=$PATH:$SPARK_HOME/bin

export MAVEN_HOME=/xxx/xxx/xxx/xxx/xxx/xxx/apache-maven
export PATH=$PATH:$MAVEN_HOME/bin

export HADOOP_HOME=/xxx/xxx/xxx/xxx/xxx/xxx/hadoop
export PATH=$PATH:$HADOOP_HOME/bin

export FLINK_HOME=/xxx/xxx/xxx/xxx/xxx/xxx/flink
export PATH=$PATH:$FLINK_HOME/bin

export PATH=/xxx/xxx/xxx/xxx/xxx/xxx/protobuf/bin:$PATH

修改完成执行命令 source ~/.zshrc 或者source /etc/profile让环境变量生效

- 修改hadoop-2.7.3/etc/hadoop/core-site.xml,如果目录不存在,给创建上

<configuration>
<property>
     <name>hadoop.tmp.dir</name> 
     <value>file:/xxx/xxx/xxx/xxx/xxx/hadoop-2.7.3/tmp</value>
  </property>
  <property>
     <name>fs.defaultFS</name>
     <value>hdfs://localhost:8020</value>
  </property>
</configuration>

- 修改hadoop-2.7.3/etc/hadoop/hdfs-site.xml,如果目录不存在,给创建上


<configuration>
<property>
         <name>dfs.replication</name>
         <value>1</value>
    </property>
    <property> 
         <name>dfs.namenode.name.dir</name>
         <value>file:/xxx/xxx/xxx/xxx/xxx/hadoop-2.7.3/dfs/name</value>
    </property>
    <property>
         <name>dfs.namenode.data.dir</name>
         <value>file:/xxx/xxx/xxx/xxx/xxx/hadoop-2.7.3/dfs/data</value>
    </property>
</configuration>

- 修改hadoop-2.7.3/etc/hadoop/yarn-site.xml


<configuration>

<!-- Site specific YARN configuration properties -->
<property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
</property>
<property>
        <name>yarn.nodemanager.env-whitelist</name>
 <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
</property>

</configuration>

- 修改hadoop-2.7.3/etc/hadoop/mapred-site.xml


<configuration>
<property> 
<name>mapreduce.framework.name
</name>
 <value>yarn</value>
 </property>
</configuration>

- 启动,hadoop目录下执行


./sbin/start-all.sh
# 格式化namenode
hdfs namenode -format

如果不能发现Java环境变量,建议直接修改hadoop-2.7.3/etc/hadoop/hadoop-env.sh


# export JAVA_HOME=${JAVA_HOME}
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8/Contents/Home

- 启动完成,通过jps命令查看组件是否已启动,NameNode、SecondaryNameNode、DataNode、ResourceManager、NodeManager均已启动,启动完成,可以登录浏览器:http://localhost:50070/查看hdfs状态


➜  hadoop-2.7.3 jps
63696 NodeManager
63969 Jps
62178 DataNode
62805 SecondaryNameNode
63510 ResourceManager
2392 
61789 NameNode
 

修改flink配置文件、并启动

- 修改flink-1.13.1/conf/flink-conf.yaml,增加slots数量,修改jobmanager的端口


# taskmanager.numberOfTaskSlots: 1
taskmanager.numberOfTaskSlots: 6
 

- 启动flink


./bin/start-cluster.sh
 

- 启动完成,使用jps命令查看进程状态,访问flink webUI http://localhost:8081/


➜  flink-1.13.1 jps
2320 SecondaryNameNode
3137 ResourceManager
3489 NodeManager
85906 TaskManagerRunner
16275 NameNode
1813 DataNode
2392 
85565 StandaloneSessionClusterEntrypoint
86431 Jps
 

- 启动flink的sql client


./bin/sql-client.sh
 

创建flink cdc表,分别以mysql、pgsql作为数据源,将数据写入到es中和kafka中

分别创建mysql和pgsql的flink-sql表


--Flink SQL
-- 设置 checkpoint 间隔为 3 秒                     
Flink SQL> SET execution.checkpointing.interval = 3s;
Flink SQL> set dfs.client.block.write.replace-datanode-on-failure.enable = ture;
Flink SQL> set dfs.client.block.write.replace-datanode-on-failure.policy = NEVER;
Flink SQL> CREATE TABLE products (
   id INT,
   name STRING,
   description STRING,
   PRIMARY KEY (id) NOT ENFORCED
 ) WITH (
   'connector' = 'mysql-cdc',
   'hostname' = 'localhost',
   'port' = '3306',
   'username' = 'root',
   'password' = '123456',
   'database-name' = 'mydb',
   'table-name' = 'products'
 );

Flink SQL> CREATE TABLE orders (
   order_id INT,
   order_date TIMESTAMP(0),
   customer_name STRING,
   price DECIMAL(10, 5),
   product_id INT,
   order_status BOOLEAN,
   PRIMARY KEY (order_id) NOT ENFORCED
 ) WITH (
   'connector' = 'mysql-cdc',
   'hostname' = 'localhost',
   'port' = '3306',
   'username' = 'root',
   'password' = '123456',
   'database-name' = 'mydb',
   'table-name' = 'orders'
 );

Flink SQL> CREATE TABLE shipments (
   shipment_id INT,
   order_id INT,
   origin STRING,
   destination STRING,
   is_arrived BOOLEAN,
   PRIMARY KEY (shipment_id) NOT ENFORCED
 ) WITH (
   'connector' = 'postgres-cdc',
   'hostname' = 'localhost',
   'port' = '5432',
   'username' = 'postgres',
   'password' = 'postgres',
   'database-name' = 'postgres',
   'schema-name' = 'public',
   'table-name' = 'shipments'
 );

sink到es


Flink SQL> CREATE TABLE enriched_orders (
   order_id INT,
   order_date TIMESTAMP(0),
   customer_name STRING,
   price DECIMAL(10, 5),
   product_id INT,
   order_status BOOLEAN,
   product_name STRING,
   product_description STRING,
   shipment_id INT,
   origin STRING,
   destination STRING,
   is_arrived BOOLEAN,
   PRIMARY KEY (order_id) NOT ENFORCED
 ) WITH (
     'connector' = 'elasticsearch-7',
     'hosts' = 'http://localhost:9200',
     'index' = 'enriched_orders'
 );

Flink SQL> INSERT INTO enriched_orders
 SELECT o.*, p.name, p.description, s.shipment_id, s.origin, s.destination, s.is_arrived
 FROM orders AS o
 LEFT JOIN products AS p ON o.product_id = p.id
 LEFT JOIN shipments AS s ON o.order_id = s.order_id;

- 打开kibana webUI  http://localhost:5601/,创建索引

- 修改 mysql 和 postgres 里面的数据,观察 elasticsearch 里的结果


-- 修改MySQL
INSERT INTO orders
VALUES (default, '2020-07-30 15:22:00', 'Jark', 29.71, 104, false);

-- 修改PG
INSERT INTO shipments
VALUES (default,10004,'Shanghai','Beijing',false);

-- 修改MySQL
UPDATE orders SET order_status = true WHERE order_id = 10004;

-- 修改PG
UPDATE shipments SET is_arrived = true WHERE shipment_id = 1004;

-- 修改MySQL
DELETE FROM orders WHERE order_id = 10004;

sink到kafka


--Flink SQL
Flink SQL> CREATE TABLE kafka_gmv (
   day_str STRING,
   gmv DECIMAL(10, 5)
 ) WITH (
     'connector' = 'kafka',
     'topic' = 'kafka_gmv',
     'scan.startup.mode' = 'earliest-offset',
     'properties.bootstrap.servers' = 'localhost:9092',
     'format' = 'changelog-json'
 );

Flink SQL> INSERT INTO kafka_gmv
 SELECT DATE_FORMAT(order_date, 'yyyy-MM-dd') as day_str, SUM(price) as gmv
 FROM orders
 WHERE order_status = true
 GROUP BY DATE_FORMAT(order_date, 'yyyy-MM-dd');

-- 读取 Kafka 的 changelog 数据,观察 materialize 后的结果
Flink SQL> SELECT * FROM kafka_gmv;

- 观察kafka的数据


docker-compose exec kafka bash -c 'kafka-console-consumer.sh --topic kafka_gmv --bootstrap-server kafka:9092 --from-beginning'

- 更新 orders 数据,观察SQL CLI 和 kafka console 的输出


-- 更新MySQL
UPDATE orders SET order_status = true WHERE order_id = 10001;
UPDATE orders SET order_status = true WHERE order_id = 10002;
UPDATE orders SET order_status = true WHERE order_id = 10003;

INSERT INTO orders
VALUES (default, '2020-07-30 17:33:00', 'Timo', 50.00, 104, true);

UPDATE orders SET price = 40.00 WHERE order_id = 10005;

DELETE FROM orders WHERE order_id = 10005;

sink到hudi

- 创建flink-hudi表


Flink SQL> CREATE TABLE enriched_orders_hudi (
   order_id INT PRIMARY KEY NOT ENFORCED,
   order_date TIMESTAMP(3),
   customer_name STRING,
   price DOUBLE,
   product_id INT,
   order_status BOOLEAN,
   `partition` VARCHAR(20)
 ) PARTITIONED BY (`partition`) WITH (
    'connector' = 'hudi'
    ,'write.precombine.field' = 'order_date'
    ,'table.type' = 'MERGE_ON_READ'
    ,'path' = 'hdfs://localhost:9000/hudi/enriched_orders_hudi'
    ,'compaction.tasks' = '1'
        ,'compaction.trigger.strategy' = 'num_or_time'
        ,'compaction.delta_commits' = '10'
        ,'compaction.delta_seconds' = '10'
        ,'read.tasks' = '1'
        ,'read.streaming.enabled' = 'true'
        ,'hoodie.datasource.query.type' = 'snapshot'
        ,'read.streaming.check-interval' = '10'
        ,'hoodie.datasource.merge.type' = 'payload_combine'
        ,'read.utc-timezone' = 'false'
);
-- 插入数据
Flink SQL> INSERT INTO enriched_orders_hudi
    SELECT *,DATE_FORMAT(order_date, 'yyyyMMdd')
    FROM orders;
-- 查看表是否有数据
Flink SQL> select customer_name,sum(price) as sum_price from enriched_orders_hudi group by customer_name;

spark-sql使用hudi已有数据,创建spark-sql hudi表

- 启动spark-sql,必须用带以下参数的方式启动


spark-sql --packages org.apache.hudi:hudi-spark-bundle_2.11:0.9.0,org.apache.spark:spark-avro_2.11:2.4.4 \
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \
--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'

- 创建spark-sql hudi表,不指定schema,自适应,分区,主键为可选


create table if not exists enriched_orders_hudi 
using hudi
location 'hdfs://localhost:9000/hudi/enriched_orders_hudi'
options (
  type = 'mor',
  primaryKey = 'order_id',
  preCombineField = 'order_date'
 ) 
partitioned by (`partition`);

- 验证


-- 在mysql的orders表中数据
INSERT INTO orders
VALUES 
(default, default, 'A君', 500.50, 102, false),
(default, default, 'B君', 100.00, 105, false);

INSERT INTO orders
VALUES 
(default, default, 'C君', 500.50, 102, false),
(default, default, 'D君', 100.00, 105, false);
-- 分别在flink sql client 和spark-sql cli执行
Flink SQL> select customer_name,sum(price) as sum_price from enriched_orders_hudi group by customer_name;
spark-sql> select customer_name,sum(price) as sum_price from enriched_orders_hudi group by customer_name;
-- 效果分别如下两图
-- 更新、删除自行演示

遇到的问题

- 由于我是单节点的hadoop,单个datanode会触发数据写入hdfs失败,报错信息如下:

Failed to replace a bad datanode on the existing pipeline due to no more good datanodes being available to try.

网上文章大部分都是让修改hdfs-site.xml添加两个配置项:


<property>
<name>dfs.client.block.write.replace-datanode-on-failure.enable</name>
<value>true</value>
</property>
<property>
<name>dfs.client.block.write.replace-datanode-on-failure.policy</name>
<value>NEVER</value>
</property>

但并不起效,因为导致这一问题的原因是客户端产生的不是服务端产生的,所以,需要修改hdfs的客户端,那么当前使用的是spark-sql,因此客户端就是spark-sql所持有的hdfs client,因此需要在启动spark-sql之后设置两个参数:


spark-sql> set dfs.client.block.write.replace-datanode-on-failure.enable = ture;
spark-sql> set dfs.client.block.write.replace-datanode-on-failure.policy = NEVER;

报错问题解决,并且可以通过insert into往hudi插入数据,通过select * from table查到hudi中的数据。

- http-request java.lang.NoSuchMethodError: io.javalin.core.CachedRequestWrapper.getContentLengthLong()J

解决办法:

直接给官方提issue https://github.com/apache/hudi/issues/3797,问题解决

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/523764.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Base64】前后端图片交互(2)

使用Base64去处理前后端图片交互 一、Base64编码介绍二、java.util.Base64 介绍源码分析编码译码 三、使用 Base64 前后端图片交互&#xff08;实操&#xff09;四、效果展示五、总结 绪论&#xff1a;在此之前小编发过一次前后端交互处理的方式&#xff1a;前后端图片交互的简…

深度学习之图像分类(三):VGGNet

系列文章目录 本专栏介绍基于深度学习进行图像识别的经典和前沿模型&#xff0c;将持续更新&#xff0c;包括不仅限于&#xff1a;AlexNet&#xff0c; ZFNet&#xff0c;VGG&#xff0c;GoogLeNet&#xff0c;ResNet&#xff0c;DenseNet&#xff0c;SENet&#xff0c;Mobile…

Windows磁盘空间不够,发现DriverStore文件夹特别大

正想安装一个新的VS2022&#xff0c;但是发现C盘的空间已经不足&#xff0c; 显示为红色了&#xff0c;这样不能安装。只好找一下C盘的空间为什么不足了&#xff0c;后来发现有一个目录特别大&#xff0c;这个目录就是DriverStore文件夹。由于电脑已经运行5年了&#xff0c;也…

Java的线程

介绍线程 线程是系统调度的最小单元&#xff0c;一个进程可以包含多个线程&#xff0c;线程是负责执行二进制指令的。 每个线程有自己的程序计数器、栈&#xff08;Stack&#xff09;、寄存器&#xff08;Register&#xff09;、本地存储&#xff08;Thread Local&#xff09…

Linux的基本权限

基本权限 1.权限的概念2.Linux上的用户分类2.1. 如何切换用户&#xff1f; 3.Linux的权限管理3.1. 文件访问者的分类&#xff08;人&#xff09;3.2.文件类型和访问权限&#xff08;文件属性&#xff09;3.2.1. 文件类型3.2.2. 基本权限 3.3. 文件权限值的表示方法3.3.1. 字符表…

Mac中idea快捷键(Keymap->macOS)

背景&#xff1a; mac&#xff1a;MacBook Pro&#xff08;13英寸&#xff0c;M2&#xff0c;2022年&#xff09; 系统版本&#xff1a;12.4 idea快捷键配置&#xff1a;本文快捷键设置基于macOS&#xff08;Keymap->macOS&#xff09; 一、常用快捷键 1.commandF 在当前…

java类和对象2

文章目录 一、Java实例变量和类变量二、Java实例方法和类方法三、Java方法重载四、Java this关键字五、Java包六、Java import语句七、Java访问权限八、Java基本类型的类封装九、Java jar文件总结 一、Java实例变量和类变量 实例变量和类变量的定义 在声明成员变量时&#xf…

微信云开发之云函数小例子

环境 微信开发者工具 Stable 1.06.2303220云开发控制台 v1.5.47 概述 云函数即在云端&#xff08;服务器端&#xff09;运行的函数&#xff0c;代码运行在云端Node.js中。我们可以使用云函数SDK中提供的数据库和存储API进行数据库和存储的操作。 云函数的独特优势在于与微信…

centos,搭建ftp服务;vsftpd

安装vsftpd 使用yum安装vsftpd&#xff1a; yum install -y vsftpd 配置vsftpd 编辑vsftpd配置文件&#xff1a; vim /etc/vsftpd/vsftpd.conf 以下是一些常见的配置项&#xff1a; anonymous_enableNO local_enableYES write_enableYES local_umask022 dirmessage_enableYE…

职场新人必备:10个写进备忘录的职场tips

作为职场新人&#xff0c;如何快速适应、获得成长和提升自己&#xff0c;是每个人都面临的挑战。在这个竞争激烈的职场中&#xff0c;拥有一些实用的职场tips&#xff0c;可以帮助你更好地应对各种挑战&#xff0c;获得成功。在本文中&#xff0c;我们将分享10个写进备忘录的职…

es8388 驱动详解

音频的基本框架 分为三个部分&#xff1a; 1&#xff09; 整体的绿框&#xff0c;为machine&#xff0c;例如你的PC等&#xff0c;负责图中 “线”的部分的关联&#xff0c;及黄色连接器的管理。也就是说不属于 paltform和codec管理的部分&#xff0c;都划归machine管理。 对应…

【Python socket】零基础也能轻松掌握的学习路线与参考资料

Python socket是Python程序语言中与网络编程密切相关的库之一&#xff0c;可以让程序员在网络世界中建立服务和客户端之间的连接。Python socket提供了一系列关键的概念和方法&#xff0c;让用户能够轻松地构建基于网络的程序&#xff0c;如基于TCP和UDP的应用程序。学习Python…

图(Graph)

Graph 图由顶点&#xff08;vertex /ˈvɜːrteks/&#xff09;和边&#xff08;edge /edʒ/&#xff09;组成的一种结构。 顶点的集合V&#xff0c;边的集合是E&#xff0c;所以图记为G &#xff08;V&#xff0c;E&#xff09; 总结: 顶点是一维数组,而边是二维数组; 假如顶点…

Pycharm无法添加Conda新建的虚拟环境

Pycharm无法添加Conda新建的虚拟环境&#xff0c;点击没反应&#xff0c;在idea.log文件中报错&#xff1a;CondaPythonLegacy - Can’t find python path to use, will use conda run instead 1.问题描述&#x1f50d; 在PyCharm中&#xff0c;依次单击File>Settings>P…

Netty核心技术一--Netty介绍和应用场景

1. 学习要求 要求已经掌握了 Java 编程&#xff0c; 主要技术构成&#xff1a; Java OOP 编程、Java 多线程编程、JavaIO 编程 、Java 网络编程、常用的Java 设计模式(比如观察者模式&#xff0c;命令模式&#xff0c;职责链模式 )、常用的数据结构(比如 链表) 2 Netty的介绍…

C++: 计时器类的设计和实现

文章目录 1. 目的2. 功能列表3. 基础功能&#xff1a;获取耗时4. API 设计: Timer 类5. 单元测试6. API 实现 1. 目的 使用 C Class 的形式&#xff0c;封装原本 C语言的获取时间的函数&#xff0c;提供更容易使用的计时器调用。 使用 C03&#xff0c;原因是和先前的线程安全队…

ATT-ACK靶场渗透(一)

开启内网环境 kali攻击机ip为 192.168.88.156 主机发现、端口扫描 进行主机发现 nmap -sS 192.168.88.156/24 -Pn 192.168.88.1和192.168.88.2可能为网关之类的&#xff0c;不管 weblogic漏洞利用 192.168.88.182开放了80端口和7001&#xff08;weblogic&#xff09;端口…

超越预期:ConvNeXt技术催生YOLOv5目标检测巨变 ,实现超准确率

目录 引言一、ConvNeXt的介绍1、目标检测的重要性2、YOLOv5的介绍3、ConvNeXt原理和特点4、ConvNeXt结构 二、相关研究综述1、目标检测的基础原理和流程2、YOLOv5的特点与局限性3、ConvNeXt技术在目标检测中的应用现状 三、ConvNeXt在YOLOv5中的应用与改进1、安装PyTorch和torc…

阿里Java工程规约(来源阿里)

一、应用分层 1.开放接口层&#xff1a; 可直接封装 Service 接口暴露成 RPC 接口&#xff1b;通过 Web 封装成 http 接口&#xff1b;网关控制层等。 2.终端显示层&#xff1a; 各个端的模板渲染并执行显示层。当前主要是 velocity 渲染&#xff0c;JS 渲染&#xff0c;JSP 渲…

[golang gin框架] 33.Gin 商城项目- 微信支付操作相关功能讲解

一.微信支付准备工作 准备工作 申请条件: 个体工商户 、企业、政府及事业单位 PC网站接入支付官网,其他(app,小程序,公众号等)可参考 PC网站接入支付 需要获取内容 appid&#xff1a;应用 APPID&#xff08;必须配置&#xff0c;开户邮件中可查看&#xff09; MCHID&#xff1a…