ArcGIS栅格重采样与算法选择

news2025/2/27 23:09:17

        本文介绍在ArcMap软件中,实现栅格图像重采样的具体操作,以及不同重采样方法的选择依据。

  首先,如下图所示,是我们待重采样的栅格图像的属性界面。其中,可以看到此时栅格像元的边长为0.4867左右(由于图层是地理坐标系,所以单位就是)。

  接下来,我们即可开始重采样操作。首先,在ArcMap软件中,依次选择“System Toolboxes”→“Data Management Tools.tbx”→“Raster”→“Raster Processing”→“Resample”选项;如下图所示。

  随后,即可弹出“Resample”窗口。在窗口的第一个选项中,输入我们待重采样的栅格文件;在第二个选项中,配置输出结果的路径与文件名称;随后,第三个选项是设置重采样后栅格像元大小的参数,可以直接通过其下方XY的数值来指定像元大小,也可以通过其他栅格文件来指定;最后,第四个选项就是重采样所采用的方法。

  上述窗口中的参数整体也都很简单,也非常好理解;但主要是最后一个选项,也就是重采样方法的选择值得进一步探究。在实际应用过程中,我们究竟该选择哪一个方法呢?我们来看一下ArcGIS官网对不同方法的介绍;如下图所示。

  可以看到,ArcGIS官方一共提供了4种栅格数据重采样的方法,分别是最邻近分配法(NEAREST)、众数算法(MAJORITY)、双线性插值法(BILINEAR)与三次卷积插值法(CUBIC)。

  首先,最邻近分配法是速度最快的插值方法。这一方法主要用于离散数据(如土地利用分类数据),因为这一方法不会更改像元的值。使用这一方法进行重采样,最大空间误差将是像元大小的一半。

  其次,众数算法根据过滤器窗口中频率最高的数值来作为像元的新值。其与最邻近分配法一样,主要用于离散数据;但与最邻近分配法相比,众数算法通常可生成更平滑的结果。众数算法将在与输出像元中心最接近的输入空间中查找相应的4 x 4像元,并使用4 x 4相邻点的众数作为像元的新值。

  再次,双线性插值法基于四个最邻近的输入像元中心的加权平均距离来确定像元的新值。这一方法对连续数据非常有用(且只能对连续数据使用),且会对数据进行一些平滑处理。

  最后,三次卷积插值法通过拟合穿过16个最邻近输入像元中心的平滑曲线确定像元的新值。这一方法仅适用于连续数据,但要注意其所生成的输出栅格可能会包含输入栅格范围以外的值。如果大家不想出现这种情况,按照官方的说法,就需要转而使用双线性插值法。与通过运行最邻近分配法获得的栅格相比,三次卷积插值法的输出结果的几何变形程度较小。三次卷积插值法的缺点是需要更多的处理时间。

  了解上述原理,我们就对选择哪一个方法有了比较清楚地认识。例如,我这里需要进行重采样操作的是一个类别数据,因此就只能选择最邻近分配法众数算法;而后,我们可以结合实际需要进行两种方法的二选一即可(或者直接用两种方法运行一遍,看看哪一个方法对应的结果更符合自己的需要)。如果大家需要进行重采样操作的是连续数据,那么四种方法理论上都是可以的,但是后两种方法相对更适合一些;大家结合需要选择或者分别运行一次,找到最合适的结果即可。

  重采样后,可以看到结果数据中像元的大小已经是我们需要的数值了。

  至此,大功告成。

参考:参考文献链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/520416.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

“技术开发最应该做什么?”,聊聊我在服务端开发5年的理解和收获

我们新推出大淘宝技术年度特刊《长期主义,往往从一些小事开始——工程师成长总结专题》,专题收录多位工程师真诚的心路历程与经验思考,覆盖终端、服务端、数据算法、技术质量等7大技术领域,欢迎一起沟通交流。 本文为此系列第二篇…

我的.net视频课程

https://edu.csdn.net/lecturer/222?spm1002.2001.3001.4144

9.并发基础与CAS基本原理

线程的状态/线程的生命周期 初始化 Thread thread new Thread();运行 thread.start(); 运行中状态 ——> 调用yeild进入就绪状态就绪状态 ——> 通过系统调度(获取到cpu时间片),又会进入到运行中状态 等待 调用如下方法就从运行进入到等待状态: Object.wait()、Object.…

2360. 图中的最长环

方法一&#xff1a;拓扑排序加搜索 class Solution { public:bool vis[100005];vector<int>v[100005];int dfs(vector<int> &dist,int st,int step){vis[st]true; // cout<<st<<endl;int res0;for(int i0;i<v[st].size();i){int xv[st][i];if(…

Angular开发之——Angular项目介绍(03)

一 概述 Angular项目目录介绍Angular程序如何启动 二 Angular项目目录介绍 2.1 项目目录 2.2 目录结构说明 工作区配置文件 node_modules &#xff1a;第三方依赖包存放的目录src&#xff1a;应用源代码目录angular-cli.json&#xff1a; Angular命令行工具的配置文件&…

设计模式之桥接模式释义与举例剖析

文章目录 一、前言二、模式定义三、模式结构四、案例具体实现五、 模式优缺点六、 模式使用场景七、 模式总结 一、前言 开始学Java讲继承的时候&#xff0c;总喜欢用一个例子来讲解&#xff0c;那就是画图形。这里有一个画笔&#xff0c;可以画正方形、长方形、圆形。除了画出…

OpenCV-答题卡识别-四点透视变换

目录 答题卡识别图片读取四点透视变换 划出区域处理选择题区域处理准考证号区域处理科目区域得分导出结果 封装成品 答题卡识别 使用opencv技术&#xff0c;实现对答题卡的自动识别&#xff0c;并进行答题结果的统计 技术目的&#xff1a; 能够捕获答题卡中的每个填涂选项;将…

【新星计划-2023】TCP三次握手和四次挥手讲解

关于TCP三次握手和四次挥手&#xff0c;各位想必在读大学的时候或者是在面试的时候一定遇到过&#xff0c;三次握手和四次挥手本身是不是太难的&#xff0c;但它容易忘&#x1f61e;&#xff0c;今天我就在这里给大家讲解一下三次握手与四次挥手。 一、三次挥手 TCP三次握手建…

我,大厂P9,找不到工作

作者| 老W 编辑| Emma 来源| 技术领导力(ID&#xff1a;jishulingdaoli) K哥写在前面的话&#xff1a;这是一位读者投稿&#xff0c;读者老W讲述了自己从大厂P9失业后、再就业的故事&#xff0c;并总结了自己的心路历程&#xff0c;很真实的记录与思考&#xff0c;值得大家借…

SensorX2car:在道路场景下的完成传感器到车体坐标系标定

文章&#xff1a;SensorX2car: Sensors-to-car calibration for autonomous driving in road scenarios 作者&#xff1a;Guohang Yan, Zhaotong Luo, Zhuochun Liu and Yikang Li 编辑&#xff1a;点云PCL 代码&#xff1a;https://github.com/OpenCalib/SensorX2car 作者单位…

IDEA+maven+Springboot工程创建超详细过程示例

IDEAmavenSpringboot工程创建超详细过程示例 1、IDEA、Maven下载安装及IDEA配置Maven教程2、IDEAmavenSpringboot的web工程创建示例2.1 SpringBoot简介2.2 maven形式创建sprintboot工程2.3 导入相关依赖2.4 创建SpringBoot启动类2.5 创建 Controller2.6 启动项目2.7 配置端口信…

springboot第22集:security,Lombok,token,redis

Spring Security是一个基于Spring框架的权限管理框架&#xff0c;用于帮助应用程序实现身份验证和授权功能。它可以为Web应用程序、REST API和方法级安全性提供支持&#xff0c;并支持各种认证方式。 Spring Security最初是Acegi Security的前身&#xff0c;但由于其配置繁琐而…

【第六期】Apache DolphinScheduler 每周 FAQ 集锦

点击蓝字 关注我们 摘要 为了让 Apache DolphinScheduler 的广大用户和爱好者对于此项目的疑问得到及时快速的解答&#xff0c;社区特发起此次【每周 FAQ】栏目&#xff0c;希望可以解决大家的实际问题。 关于本栏目的要点&#xff1a; 本栏目每周将通过腾讯文档&#xff08;每…

用排列组合来编码通信(六)——魔术《5张牌的预言》的魔术拓展之《My Fitch Four Glory》...

早点关注我&#xff0c;精彩不错过&#xff01; 在上一篇中&#xff0c;我们介绍了《5张牌的预言》这个魔术的一个精彩的扩展表演《Eigens Value》&#xff0c;把这个魔术和数学性质的结合做到了极致&#xff0c;相关内容请戳&#xff1a; 用排列组合来编码通信&#xff08;五&…

第二十二章 Unity 光照贴图

光照贴图过程将预先计算场景中静态物体表面的亮度&#xff0c;并将结果存储在称为“光照贴图”的纹理中供以后使用。光照贴图可以包含直接光照和间接光照&#xff0c;以及阴影效果。但是&#xff0c;烘焙到光照贴图中的数据无法在运行时更改&#xff0c;这就是为什么移动静态物…

Angular开发之——Angular介绍(01)

一 概述 Angular是什么AngularJS和Angular关系Angular特性Angular的发展历史Angular学习建议 二 Angular是什么 Angular(读音[ˈŋɡjələr])是一套用于构建用户界面的javaScript框架。由Google开发和维护&#xff0c;主要被用来开发单页面应用程序类似于Vue.js(MVVM数据驱动…

视觉检测技术在图书生产缺陷控制中的应用

在过去我们一直向大家展示的是视觉检测应用在重工业制造之上&#xff0c;让很多人误以为这种新兴的检测技术更加倾向于重工业&#xff0c;或者说因为成本因素&#xff0c;这项技术对目前的轻工业来说更加的不友好&#xff0c;其实并不是这样的。 轻工业我们之所以很少的提机器…

docker入门和docker应用场景,镜像制作,服务编排,docker私服

一、简介 docker解决了什么问题docker和虚拟机的区别在CentOS7里安装docker 1. docker简介 我们写的代码会接触到好几个环境&#xff1a;开发环境、测试环境以及生产环境等等。多种环境去部署同一份代码&#xff0c;由于环境原因往往会出现软件跨环境迁移的问题&#xff08;也就…

黏包和半包

黏包和半包 黏包&#xff1a; Slf4j public class HelloWorldServer {public static void main(String[] args) {NioEventLoopGroup boss new NioEventLoopGroup();NioEventLoopGroup worker new NioEventLoopGroup();try {ServerBootstrap serverBootstrap new ServerBoo…

open3d教程(二):可视化三维模型,并转换成点云(Python版本)

1、三维模型获取 可以自己用建模软件建立一个模型从free3d免费下载 2、关键函数 open3d.visualization.draw_geometries 参数&#xff1a; geometry_list(List[open3d.geometry.Geometry])&#xff1a;要可视化的几何体列表.window_name(str, optional, defaultOpen3D)&…