跟着LearnOpenGL学习3--四边形绘制

news2025/1/13 6:02:53

文章目录

  • 一、前言
  • 二、元素缓冲对象
  • 三、完整代码
  • 四、绘制模式

一、前言

通过跟着LearnOpenGL学习2–三角形绘制一文,我们已经知道了怎么配置渲染管线,来绘制三角形;

OpenGL主要处理三角形,当我们需要绘制别的图形时,例如:四边形,应当用三角形去拼接,组成我们想要的四边形;


二、元素缓冲对象

元素缓冲对象(Element Buffer Object,EBO),也叫索引缓冲对象(Index Buffer Object,IBO)

假设我们不再绘制一个三角形,而是绘制一个矩形。我们可以绘制两个三角形来组成一个矩形(OpenGL主要处理三角形)。

顶点数据如下:

float vertices[] = {
    // 第一个三角形
    0.5f, 0.5f, 0.0f,   // 右上角
    0.5f, -0.5f, 0.0f,  // 右下角
    -0.5f, 0.5f, 0.0f,  // 左上角
    // 第二个三角形
    0.5f, -0.5f, 0.0f,  // 右下角
    -0.5f, -0.5f, 0.0f, // 左下角
    -0.5f, 0.5f, 0.0f   // 左上角
};
  • 一个矩形只有4个而不是6个顶点,可以看到,我们指定了右下角和左上角两次;
  • 这样就产生50%的额外开销,当我们有包括上千个三角形的模型之后,这个问题会更糟糕,这会产生一大堆浪费;

更好的解决方案是只储存不同的顶点,并设定绘制这些顶点的顺序;这样子我们只要储存4个顶点就能绘制矩形了,之后只要指定绘制的顺序就行了;

元素缓冲区对象的工作方式正是如此,EBO是一个缓冲区,就像一个顶点缓冲区对象一样,它存储 OpenGL 用来决定要绘制哪些顶点的索引,这种所谓的索引绘制(Indexed Drawing)正是我们问题的解决方案;

定义(不重复的)顶点,和绘制出矩形所需的索引:

float vertices[] = {
    0.5f, 0.5f, 0.0f,   // 右上角
    0.5f, -0.5f, 0.0f,  // 右下角
    -0.5f, -0.5f, 0.0f, // 左下角
    -0.5f, 0.5f, 0.0f   // 左上角
};

unsigned int indices[] = {
    // 注意索引从0开始! 
    // 此例的索引(0,1,2,3)就是顶点数组vertices的下标,
    // 这样可以由下标代表顶点组合成矩形

    0, 1, 3, // 第一个三角形
    1, 2, 3  // 第二个三角形
};

创建元素缓冲对象

unsigned int EBO;
glGenBuffers(1, &EBO);

绑定EBO到GL_ELEMENT_ARRAY_BUFFER缓冲区

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);

把索引复制到GL_ELEMENT_ARRAY_BUFFER缓冲区

glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

绘制三角形

glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);

注意:用glDrawElements函数来绘制,而不是glDrawArrays函数;

  • 第一个参数指定了我们绘制的模式,GL_TRIANGLES表示我们要绘制三角形;
  • 第二个参数是我们打算绘制顶点的个数,这里填6,也就是说我们一共需要绘制6个顶点;
  • 第三个参数是索引的类型,这里是GL_UNSIGNED_INT
  • 最后一个参数里我们可以指定EBO中的偏移量(或者传递一个索引数组,但是这是当你不在使用索引缓冲对象的时候),但是我们会在这里填写0;

glDrawElements函数从当前绑定到GL_ELEMENT_ARRAY_BUFFER目标的EBO中获取其索引。这意味着我们每次想要使用索引渲染对象时都必须绑定相应的EBO,这又有点麻烦。碰巧顶点数组对象也跟元素缓冲区对象绑定。在绑定VAO时,绑定的最后一个元素缓冲区对象存储为VAO的元素缓冲区对象。然后,绑定到VAO也会自动绑定该EBO。

最后的初始化和绘制代码现在看起来像这样:

// ..:: 初始化代码 :: ..
// 1. 绑定顶点数组对象
glBindVertexArray(VAO);
// 2. 把我们的顶点数组复制到一个顶点缓冲中,供OpenGL使用
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// 3. 复制我们的索引数组到一个索引缓冲中,供OpenGL使用
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
// 4. 设定顶点属性指针
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);

[...]

// ..:: 绘制代码(渲染循环中) :: ..
glUseProgram(shaderProgram);
glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
glBindVertexArray(0);

三、完整代码

在这里插入图片描述

#include "mainwindow.h"
#include <QApplication>

//在包含GLFW的头文件之前包含了GLAD的头文件;
//GLAD的头文件包含了正确的OpenGL头文件(例如GL/gl.h);
//所以需要在其它依赖于OpenGL的头文件之前包含GLAD;
#include <glad/glad.h>
#include <GLFW/glfw3.h>

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

const char *vertexShaderSource = "#version 330 core\n"
    "layout (location = 0) in vec3 aPos;\n"
    "void main()\n"
    "{\n"
    "   gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n"
    "}\0";
const char *fragmentShaderSource = "#version 330 core\n"
    "out vec4 FragColor;\n"
    "void main()\n"
    "{\n"
    "   FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n"
    "}\n\0";

int main(int argc, char *argv[])
{
    QApplication a(argc, argv);

    //MainWindow w;
    //w.show();


    //初始化GLFW
    //--------------------
    glfwInit();

    //配置GLFW
    //--------------------
    //告诉GLFW使用的OpenGL本是3.3
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    //告诉GLFW使用的是核心模式(Core-profile)
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

    //创建一个新的OpenGL环境和窗口
    //-----------------------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();    //glfw销毁窗口喝OpenGL环境,并释放资源
        return -1;
    }

    //设置参数window中的窗口所关联的OpenGL环境为当前环境
    //-----------------------------------
    glfwMakeContextCurrent(window);

    //设置窗口尺寸改变大小时的回调函数(窗口尺寸发送改变时会自动调用)
    //-----------------------------------
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

    //glad加载系统相关的OpenGL函数指针
    //---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    //顶点着色器
    //---------------------------------------------------------------------
    unsigned int vertexShader = glCreateShader(GL_VERTEX_SHADER);
    glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
    glCompileShader(vertexShader);
    //检验着色器编译是否成功
    int success;
    char infoLog[512];
    glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
    }

    //片段着色器
    //---------------------------------------------------------------------
    unsigned int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
    glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
    glCompileShader(fragmentShader);
    //检验着色器编译是否成功
    glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
    }

    //链接着色器到着色器程序
    //---------------------------------------------------------------------
    unsigned int shaderProgram = glCreateProgram();
    glAttachShader(shaderProgram, vertexShader);
    glAttachShader(shaderProgram, fragmentShader);
    glLinkProgram(shaderProgram);
    //检查链接是否成功
    glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
    if (!success) {
        glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
    }
    //链接成功后删除着色器对象
    glDeleteShader(vertexShader);
    glDeleteShader(fragmentShader);

    //顶点数据
    //---------------------------------------------------------------------
    float vertices[] = {
         0.5f,  0.5f, 0.0f,  // top right
         0.5f, -0.5f, 0.0f,  // bottom right
        -0.5f, -0.5f, 0.0f,  // bottom left
        -0.5f,  0.5f, 0.0f   // top left
    };
    unsigned int indices[] = {  //绘制索引
        0, 1, 3,  //第1个三角形
        1, 2, 3   //第2个三角形
    };

    unsigned int VBO, VAO, EBO;
    glGenVertexArrays(1, &VAO);     //创建顶点数组对象
    glGenBuffers(1, &VBO);          //创建顶点缓冲对象
    glGenBuffers(1, &EBO);          //创建元素缓冲对象

    glBindVertexArray(VAO);         //绑定VAO

    glBindBuffer(GL_ARRAY_BUFFER, VBO);     //将VBO与GL_ARRAY_BUFFER缓冲区绑定
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);  //将顶点数据复制到GL_ARRAY_BUFFER缓冲区,之后可通过VBO进行操作

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);     //将EBO与GL_ELEMENT_ARRAY_BUFFER缓冲区绑定
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);    //将索引复制到GL_ELEMENT_ARRAY_BUFFER缓冲区,之后可通过EBO进行操作

    //设定顶点属性指针
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);

    //调用glVertexAttribPointer将VBO注册为顶点属性的绑定顶点缓冲对象,因此之后我们可以安全地解除绑定
    glBindBuffer(GL_ARRAY_BUFFER, 0);

    //解除对VAO的绑定
    glBindVertexArray(0);


    //渲染循环
    //我们可不希望只绘制一个图像之后我们的应用程序就立即退出并关闭窗口;
    //我们希望程序在我们主动关闭它之前不断绘制图像并能够接受用户输入;
    //因此,我们需要在程序中添加一个while循环,它能在我们让GLFW退出前一直保持运行;
    //------------------------------------------------------------------------------
    while (!glfwWindowShouldClose(window))  //如果用户准备关闭参数window所指定的窗口,那么此接口将会返回GL_TRUE,否则将会返回GL_FALSE
    {
        //用户输入
        //------------------------------------------------------------------------------
        processInput(window);   //检测是否有输入

        //渲染指令
        //------------------------------------------------------------------------------
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);

        //绘制三角形
        glUseProgram(shaderProgram);        //激活着色器程序对象
        glBindVertexArray(VAO);             //绑定VAO
        glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);    //绘制三角形
        // glBindVertexArray(0);            //解绑VAO

        //告诉GLFW检查所有等待处理的事件和消息,包括操作系统和窗口系统中应当处理的消息。如果有消息正在等待,它会先处理这些消息再返回;否则该函数会立即返回
        //---------------------------------------------------------------------------------------------------------------------------------
        glfwPollEvents();

        //请求窗口系统将参数window关联的后缓存画面呈现给用户(双缓冲绘图)
        //------------------------------------------------------------------------------
        glfwSwapBuffers(window);
    }

    //释放资源
    glDeleteVertexArrays(1, &VAO);
    glDeleteBuffers(1, &VBO);
    glDeleteBuffers(1, &EBO);
    glDeleteProgram(shaderProgram);

    //glfw销毁窗口喝OpenGL环境,并释放资源(之后必须再次调用glfwInit()才能使用大多数GLFW函数)
    //------------------------------------------------------------------
    glfwTerminate();


    return a.exec();
}

//检测是否有输入
//---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
    if(glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)   //ESC键,退出
        glfwSetWindowShouldClose(window, true);
}

//给glfw窗口注册的尺寸改变回调函数
//---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}


四、绘制模式

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);		//线框模式
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);		//填充模式(默认模式)

为了清除得看到我们绘制的四边形是由两个三角形拼接而成的,我们可以采用线框模式进行绘制,就一目了然了;

在这里插入图片描述

#include "mainwindow.h"
#include <QApplication>

//在包含GLFW的头文件之前包含了GLAD的头文件;
//GLAD的头文件包含了正确的OpenGL头文件(例如GL/gl.h);
//所以需要在其它依赖于OpenGL的头文件之前包含GLAD;
#include <glad/glad.h>
#include <GLFW/glfw3.h>

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

const char *vertexShaderSource = "#version 330 core\n"
    "layout (location = 0) in vec3 aPos;\n"
    "void main()\n"
    "{\n"
    "   gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n"
    "}\0";
const char *fragmentShaderSource = "#version 330 core\n"
    "out vec4 FragColor;\n"
    "void main()\n"
    "{\n"
    "   FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n"
    "}\n\0";

int main(int argc, char *argv[])
{
    QApplication a(argc, argv);

    //MainWindow w;
    //w.show();


    //初始化GLFW
    //--------------------
    glfwInit();

    //配置GLFW
    //--------------------
    //告诉GLFW使用的OpenGL本是3.3
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    //告诉GLFW使用的是核心模式(Core-profile)
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

    //创建一个新的OpenGL环境和窗口
    //-----------------------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();    //glfw销毁窗口喝OpenGL环境,并释放资源
        return -1;
    }

    //设置参数window中的窗口所关联的OpenGL环境为当前环境
    //-----------------------------------
    glfwMakeContextCurrent(window);

    //设置窗口尺寸改变大小时的回调函数(窗口尺寸发送改变时会自动调用)
    //-----------------------------------
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

    //glad加载系统相关的OpenGL函数指针
    //---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    //顶点着色器
    //---------------------------------------------------------------------
    unsigned int vertexShader = glCreateShader(GL_VERTEX_SHADER);
    glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
    glCompileShader(vertexShader);
    //检验着色器编译是否成功
    int success;
    char infoLog[512];
    glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
    }

    //片段着色器
    //---------------------------------------------------------------------
    unsigned int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
    glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
    glCompileShader(fragmentShader);
    //检验着色器编译是否成功
    glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
    }

    //链接着色器到着色器程序
    //---------------------------------------------------------------------
    unsigned int shaderProgram = glCreateProgram();
    glAttachShader(shaderProgram, vertexShader);
    glAttachShader(shaderProgram, fragmentShader);
    glLinkProgram(shaderProgram);
    //检查链接是否成功
    glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
    if (!success) {
        glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
    }
    //链接成功后删除着色器对象
    glDeleteShader(vertexShader);
    glDeleteShader(fragmentShader);

    //顶点数据
    //---------------------------------------------------------------------
    float vertices[] = {
         0.5f,  0.5f, 0.0f,  // top right
         0.5f, -0.5f, 0.0f,  // bottom right
        -0.5f, -0.5f, 0.0f,  // bottom left
        -0.5f,  0.5f, 0.0f   // top left
    };
    unsigned int indices[] = {  //绘制索引
        0, 1, 3,  //第1个三角形
        1, 2, 3   //第2个三角形
    };

    unsigned int VBO, VAO, EBO;
    glGenVertexArrays(1, &VAO);     //创建顶点数组对象
    glGenBuffers(1, &VBO);          //创建顶点缓冲对象
    glGenBuffers(1, &EBO);          //创建元素缓冲对象

    glBindVertexArray(VAO);         //绑定VAO

    glBindBuffer(GL_ARRAY_BUFFER, VBO);     //将VBO与GL_ARRAY_BUFFER缓冲区绑定
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);  //将顶点数据复制到GL_ARRAY_BUFFER缓冲区,之后可通过VBO进行操作

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);     //将EBO与GL_ELEMENT_ARRAY_BUFFER缓冲区绑定
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);    //将索引复制到GL_ELEMENT_ARRAY_BUFFER缓冲区,之后可通过EBO进行操作

    //设定顶点属性指针
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);

    //调用glVertexAttribPointer将VBO注册为顶点属性的绑定顶点缓冲对象,因此之后我们可以安全地解除绑定
    glBindBuffer(GL_ARRAY_BUFFER, 0);

    //解除对VAO的绑定
    glBindVertexArray(0);

    //启用线框模式
    glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

    //渲染循环
    //我们可不希望只绘制一个图像之后我们的应用程序就立即退出并关闭窗口;
    //我们希望程序在我们主动关闭它之前不断绘制图像并能够接受用户输入;
    //因此,我们需要在程序中添加一个while循环,它能在我们让GLFW退出前一直保持运行;
    //------------------------------------------------------------------------------
    while (!glfwWindowShouldClose(window))  //如果用户准备关闭参数window所指定的窗口,那么此接口将会返回GL_TRUE,否则将会返回GL_FALSE
    {
        //用户输入
        //------------------------------------------------------------------------------
        processInput(window);   //检测是否有输入

        //渲染指令
        //------------------------------------------------------------------------------
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);

        //绘制三角形
        glUseProgram(shaderProgram);        //激活着色器程序对象
        glBindVertexArray(VAO);             //绑定VAO
        glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);    //绘制三角形
        // glBindVertexArray(0);            //解绑VAO

        //告诉GLFW检查所有等待处理的事件和消息,包括操作系统和窗口系统中应当处理的消息。如果有消息正在等待,它会先处理这些消息再返回;否则该函数会立即返回
        //---------------------------------------------------------------------------------------------------------------------------------
        glfwPollEvents();

        //请求窗口系统将参数window关联的后缓存画面呈现给用户(双缓冲绘图)
        //------------------------------------------------------------------------------
        glfwSwapBuffers(window);
    }

    //释放资源
    glDeleteVertexArrays(1, &VAO);
    glDeleteBuffers(1, &VBO);
    glDeleteBuffers(1, &EBO);
    glDeleteProgram(shaderProgram);

    //glfw销毁窗口喝OpenGL环境,并释放资源(之后必须再次调用glfwInit()才能使用大多数GLFW函数)
    //------------------------------------------------------------------
    glfwTerminate();


    return a.exec();
}

//检测是否有输入
//---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
    if(glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)   //ESC键,退出
        glfwSetWindowShouldClose(window, true);
}

//给glfw窗口注册的尺寸改变回调函数
//---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/513255.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

切记:缺少进项利用这个方法!增值税高也不怕!

切记&#xff1a;缺少进项利用这个方法&#xff01;增值税高也不怕&#xff01; 业务是流程&#xff0c;财税是结果&#xff0c;税收问题千千万&#xff0c;《税算盘》来帮你找答案。 企业缺少进项&#xff0c;这个问题是所有企业和财务都无法回避的问题&#xff0c;让企业非…

实用篇 | huggingface的简单应用

本文主要介绍hugging Face(拥抱脸)的简单介绍以及常见用法&#xff0c;用来模型测试是个好的工具~ 如下图所示左边框是各项任务&#xff0c;包含多模态&#xff08;Multimodal&#xff09;&#xff0c;计算机视觉(Computer Vision)&#xff0c;自然语言处理(NLP)等&#xff0c;…

强人工智能时代,区块链还有戏吗?

最近很多人都在问我&#xff0c;ChatGPT 把 AI 又带火了&#xff0c;区块链和 Web3 被抢了风头&#xff0c;以后还有戏吗&#xff1f;还有比较了解我的朋友问&#xff0c;当年你放弃 AI 而选择区块链&#xff0c;有没有后悔&#xff1f; 这里有一个小背景。2017 年初我离开 IBM…

uni-app两个入口模块(客户端和用户端)

思路&#xff1a;使用vuex对小程序进行登录状态管理&#xff0c;采用集中式存储管理应用的登录状态 Vuex 是什么&#xff1f; | Vuex 效果&#xff1a; 新建store文件夹&#xff0c;在文件夹中新建一个index.js文件和一个modules文件夹&#xff0c;modules文件夹中新建一个st…

【历史上的今天】5 月 11 日:Dijkstra 算法开发者诞生;电子表格软件的开山鼻祖;机器狗 AIBO 问世

整理 | 王启隆 透过「历史上的今天」&#xff0c;从过去看未来&#xff0c;从现在亦可以改变未来。 今天是 2023 年 5 月 11 日&#xff0c;在 1995 年的今天&#xff0c;我国成为第六个研制成功磁悬浮列车的国家。磁悬浮列车利用“同性相斥&#xff0c;异性相吸”的原理&…

Linux基础学习---2、系统管理、帮助命令、文件目录类命令

1、系统管理 1.1 Linux中的进程和服务 计算机中&#xff0c;一个正在执行的程序或命令。被叫做“进程”&#xff08;Process&#xff09;。 启动之后一直存在、常驻内存的进程&#xff0c;一般称做“服务”&#xff08;Service&#xff09;。1.2 systemctl&#xff08;CentOS…

以playwright脚本为例,详解Python with as处理异常的原理

大家在做playwright自动化测试时&#xff0c;一定会遇到下面的写法 with sync_playwright() as p:自动化代码 很多同学可能只是按照这种写法来编写项目的自动化测试代码&#xff0c;对于具体细节可能并不了解&#xff0c;今天我来结合playwright讲解一下 Python中的 with ...…

大咖齐聚CCIG论坛——文档图像智能分析的产业前沿

目录 1 文档图像智能分析技术2 大咖齐聚CCIG20233 议题介绍3.1 从模式识别到类脑研究3.2 视觉-语言预训练模型演进及应用3.3 篡改文本图像的生成和检测3.4 智能文档处理在工业界的应用与挑战 4 观看入口&议程 1 文档图像智能分析技术 文档图像智能分析是指使用计算机视觉和…

推荐一款支持多种存储的程序AList(附上个人站点)

1、安装部署 1、一键脚本 仅适用于 Linux amd64/arm64 平台。 #安装 curl -fsSL "https://alist.nn.ci/v3.sh" | bash -s install#更新 curl -fsSL "https://alist.nn.ci/v3.sh" | bash -s update#卸载 curl -fsSL "https://alist.nn.ci/v3.sh&qu…

【react】特种兵之react.tsx列表页面搭建

目录 背景了解工程架构我可开始了啊新建一个页面怎么写&#xff1f;前端代码编写思路 感触 背景 方便系统运维、不用每次初始化数据都走数据订正 这是第一次毕业之后&#xff0c;用前端语言新建一个页面&#xff0c;过程自然是极其曲折。情绪也是跌宕起伏&#xff0c;从页面显…

无需代理客户端,轻松实现虚拟机备份!

21世纪的虚拟化技术为企业提供了极大的便利和成本节约。它允许企业通过管理程序创建虚拟机以在单个主机上运行多个不同的操作系统&#xff0c;从而充分利用计算资源并节省架构和管理成本。 随着组织将其业务迁移到虚拟化平台&#xff0c;执行数据保护的方法也随之改变。虚拟机…

重视企业缺少成本票问题!合理利用税收优惠政策降低企业所得税!

重视企业缺少成本票问题&#xff01;合理利用税收优惠政策降低企业所得税&#xff01; 业务是流程&#xff0c;财税是结果&#xff0c;税收问题千千万&#xff0c;关注《税算盘》来帮你找答案。 很多企业在成立的初期会出现对票据管理不严格的情况&#xff0c;前期影响也不是…

精选博客系列|VMware Tanzu Mission Control增强策略功能,让Kubernetes的安全性更加灵活

随着分布式系统日益复杂&#xff0c;定义和实施 Kubernetes 集群的策略以确保环境的安全性、可靠性和合规性 —— 当然也是为了构建可扩展性的支撑结构&#xff0c;变得至关重要。 因此&#xff0c;我们很高兴宣布 VMware Tanzu Mission Control 现在有了更多的策略相关的改进…

C# webservice 接收json数据 接口返回 远程服务器返回错误: (500) 内部服务器错误

C# post 调用webservice 服务端接口&#xff0c;会返回上面那个错误&#xff0c;8成是发送的数据和接口不符合造成的。有2种情况 第一种情况如下&#xff1a;如果类型是默认request.ContentType "application/x-www-form-urlencoded";这个类型 那么你发送数据和被…

基于趋动云部署B站大V秋葉aaaki的Stable Diffusion整合包v4--linux版

B站大V秋葉aaaki的Stable Diffusion整合V4版发布了&#xff0c;集成度比较高&#xff0c;在windows下解压缩直接就可以使用&#xff0c;整合的非常好。但是笔人没有RTX4090这样级别的显卡&#xff0c;又希望有个高速运行的效果。 所以索性到云GPU主机上来用秋叶aaaki的Stable …

windows机制初探

Windows内存管理 EPROCESS结构体&#xff1a;在内核中表示一个进程 VAD树 二叉树&#xff0c;存储进程在内核层申请的虚拟内存信息 (x86 EPROCESS0x11c) (x64 EPROCESS0x7d8)指向VadRoot(VAD树) 可以看到两种内存&#xff1a;Private(私有内存)、 Mapped(映射内存) 私有内…

Elasticsearch 入门

Elasticsearch 是一种开源搜索引擎&#xff0c;它基于 Apache Lucene 构建&#xff0c;提供了一个分布式、多租户、全文搜索和分析引擎。Elasticsearch 可以处理海量数据&#xff0c;能够快速、准确地搜索、分析和可视化数据。 Elasticsearch 最初是为了解决日志搜索和分析而开…

2018年下半年 软件设计师 答案及详解

2018年下半年 软件设计师 答案详解 主要记录刷题相关笔记&#xff0c;方便日后温习&#xff01;&#xff01;&#xff01; 一、选择题 CPU 在执行指令的过程中&#xff0c;会自动修改_____的内容&#xff0c;以使其保存的总是将要执行的下一条指令的地址。 A.指令寄存器B.程…

makefile 变量的扩展

文章目录 前言一、环境变量&#xff08;全局变量&#xff09;二、目标变量&#xff08;局部变量&#xff09;三、模式变量总结 前言 一、环境变量&#xff08;全局变量&#xff09; Makefile 中的环境变量&#xff0c;是指在执行 Makefile 时&#xff0c;从外部传入 Make 命令…

m4a音频怎么转换成mp3?

m4a音频怎么转换成mp3&#xff1f;如果你遇到了m4a音频格式的文件&#xff0c;但却无法在音频播放器中打开它&#xff0c;通常我们会将其转换成mp3格式。因为M4A属于苹果专用的音频格式&#xff0c;而MP3则是一种通用音频格式。M4A属于高品质压缩类型的音乐文件&#xff0c;而M…