Linux线程同步(2)——初识互斥锁

news2025/1/18 20:27:52

        互斥锁(mutex)又叫互斥量,从本质上说是一把锁,在访问共享资源之前对互斥锁进行上锁,在访问完成后释放互斥锁(解锁);对互斥锁进行上锁之后,任何其它试图再次对互斥锁进行加锁的线程都会被阻塞,直到当前线程释放互斥锁。如果释放互斥锁时有一个以上的线程阻塞,那么这些阻塞的线程会被唤醒, 它们都会尝试对互斥锁进行加锁,当有一个线程成功对互斥锁上锁之后,其它线程就不能再次上锁了,只能再次陷入阻塞,等待下一次解锁。

        举一个非常简单容易理解的例子,就拿卫生间(共享资源)来说,当来了一个人(线程)看到卫生间没人,它进去后(占用)、从里边把门锁住(互斥锁上锁);此时又来两个人(线程),它们也想进卫生间方便,发生此时门打不开(互斥锁上锁失败),因为里边有人,所以此时它们只能等待(陷入阻塞);当里边的人方便完了之后(访问共享资源完成),把锁(互斥锁解锁)打开从里边出来,此时外边有两个人在等,当然它们都迫不及待想要进去(尝试对互斥锁进行上锁),自然两个人只能进去一个,进去的人再次把门锁住,另外一个人只能继续等待它出来。

        在我们的程序设计当中,只有将所有线程访问共享资源都设计成相同的数据访问规则,互斥锁才能正常工作。如果允许其中的某个线程在没有得到锁的情况下也可以访问共享资源,那么即使其它的线程在使用共享资源前都申请锁,也还是会出现数据不一致的问题。

        互斥锁使用 pthread_mutex_t 数据类型表示,在使用互斥锁之前,必须首先对它进行初始化操作,可以使用两种方式对互斥锁进行初始化操作。

互斥锁初始化

1、使用 PTHREAD_MUTEX_INITIALIZER 宏初始化互斥锁

        互斥锁使用 pthread_mutex_t 数据类型表示, pthread_mutex_t 其实是一个结构体类型, 而宏PTHREAD_MUTEX_INITIALIZER 其实是一个对结构体赋值操作的封装,如下所示:

# define PTHREAD_MUTEX_INITIALIZER \
 { { 0, 0, 0, 0, 0, __PTHREAD_SPINS, { 0, 0 } } }

        所以由此可知,使用 PTHREAD_MUTEX_INITIALIZER 宏初始化互斥锁的操作如下:        

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

        PTHREAD_MUTEX_INITIALIZER 宏已经携带了互斥锁的默认属性。

2、使用 pthread_mutex_init()函数初始化互斥锁

        使用 PTHREAD_MUTEX_INITIALIZER 宏只适用于在定义的时候就直接进行初始化,对于其它情况则不能使用这种方式,譬如先定义互斥锁,后再进行初始化,或者在堆中动态分配的互斥锁,譬如使用 malloc() 函数申请分配的互斥锁对象,那么在这些情况下,可以使用 pthread_mutex _init()函数对互斥锁进行初始化, 其函数原型如下所示:

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr);

        函数参数和返回值含义如下:

        mutex:参数 mutex 是一个 pthread_mutex_t 类型指针,指向需要进行初始化操作的互斥锁对象;

        attr:参数 attr 是一个 pthread_mutexattr_t 类型指针,指向一个 pthread_mutexattr_t 类型对象,该对象用于定义互斥锁的属性,若将参数 attr 设置为 NULL,则表示将互斥锁的属性设置为默认值,在这种情况下其实就等价于 PTHREAD_MUTEX_INITIALIZER 这种方式初始化,而不同之处在于, 使用宏不进行错误检查。

        返回值:成功返回 0;失败将返回一个非 0 的错误码。

        Tips:注意,当在 Ubuntu 系统下执行"man 3 pthread_mutex_init"命令时提示找不到该函数,并不是 Linux 下没有这个函数,而是该函数相关的 man 手册帮助信息没有被安装,这时我们只需执行"sudo apt-get install manpages-posix-dev"安装即可。、

        使用 pthread_mutex_init()函数对互斥锁进行初始化示例:         

pthread_mutex_t mutex;
pthread_mutex_init(&mutex, NULL);

        或者:

pthread_mutex_t *mutex = malloc(sizeof(pthread_mutex_t));
pthread_mutex_init(mutex, NULL);

互斥锁加锁和解锁

        互斥锁初始化之后,处于一个未锁定状态,调用函数 pthread_mutex_lock()可以对互斥锁加锁、获取互斥锁,而调用函数 pthread_mutex_unlock()可以对互斥锁解锁、释放互斥锁。其函数原型如下所示:

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

        参数 mutex 指向互斥锁对象;pthread_mutex_lock()和 pthread_mutex_unlock()在调用成功时返回 0;失败将返回一个非 0 值的错误码。

        调用 pthread_ mutex_lock()函数对互斥锁进行上锁,如果互斥锁处于未锁定状态,则此次调用会上锁成功,函数调用将立马返回;如果互斥锁此时已经被其它线程锁定了,那么调用 pthread_mutex_lock()会一直阻塞,直到该互斥锁被解锁,到那时,调用将锁定互斥锁并返回。 调用 pthread_mutex_unlock()函数将已经处于锁定状态的互斥锁进行解锁。以下行为均属错误:

  • 对处于未锁定状态的互斥锁进行解锁操作;
  • 解锁由其它线程锁定的互斥锁。

        如果有多个线程处于阻塞状态等待互斥锁被解锁 ,当互斥锁被当前锁定它的线程调用pthread _mutex_unlock()函数解锁后,这些等待着的线程都会有机会对互斥锁上锁,但无法判断究竟哪个线程会如愿以偿!

        使用示例

        使用互斥锁的方式将线程保护(1)示例代码进行修改,使用了一个互斥锁来保护对全局变量 g_count 的访问。

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#include <string.h>

static pthread_mutex_t mutex;
static int g_count = 0;

static void *new_thread_start(void *arg){
    int loops = *((int *)arg);
    int l_count, j;
    for (j = 0; j < loops; j++) {
        pthread_mutex_lock(&mutex);//互斥锁上锁
        l_count = g_count;
        l_count++;
        g_count = l_count;
        pthread_mutex_unlock(&mutex);//互斥锁解锁
    }
    return (void *)0;
}
static int loops;
int main(int argc, char *argv[]){
    pthread_t tid1, tid2;
    int ret;
    /* 获取用户传递的参数 */
    if (2 > argc)
        loops = 10000000; //没有传递参数默认为 1000 万次
    else
        loops = atoi(argv[1]);

    /* 初始化互斥锁 */
    pthread_mutex_init(&mutex,NULL);
    
    /* 创建 2 个新线程 */
    ret = pthread_create(&tid1, NULL, new_thread_start, &loops);
    if (ret) {
        fprintf(stderr, "pthread_create error: %s\n", strerror(ret));
        exit(-1);
    }
    ret = pthread_create(&tid2, NULL, new_thread_start, &loops);
    if (ret) {
        fprintf(stderr, "pthread_create error: %s\n", strerror(ret));
        exit(-1);
    }
    /* 等待线程结束 */
    ret = pthread_join(tid1, NULL);
    if (ret) {
        fprintf(stderr, "pthread_join error: %s\n", strerror(ret));
        exit(-1);
    }
    ret = pthread_join(tid2, NULL);
    if (ret) {
        fprintf(stderr, "pthread_join error: %s\n", strerror(ret));
        exit(-1);
    }
    /* 打印结果 */
    printf("g_count = %d\n", g_count);
    exit(0);
}

        测试运行,使用默认值 1000 万次,如下所示:

        可以看到确实得到了我们想看到的正确结果,每次对 g_count 的累加总是能够保持正确,但是在运行程序的过程中,明显会感觉到锁消耗的时间会比较长,这就涉及到性能的问题了,后续会介绍。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/512238.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C语言:青蛙跳台与汉诺塔问题

青蛙跳台 原理&#xff1a;一只青蛙跳n个台阶&#xff0c;青蛙可以一次性跳1个台阶&#xff0c;也可以跳2个台阶&#xff0c;问&#xff0c;有多少种跳法&#xff0c;可以跳过n个台阶。 分析&#xff1a;青蛙跳台本质上是递归问题&#xff0c;那它为什么是递归问题呢&#xff…

cleanmymac在哪下载?中文官网安装教程

CleanMyMac是一个系统清理工具&#xff0c;删除系统缓存文件 , 多余的应用程序语言包 , PowerPc软件运行库等。 是个给你的硬盘瘦身的好工具。 系统&#xff1a;macOS 10.14&#xff08;在10.15以及Big Sur中的安装激活教程相同&#xff09;登录CleanMyMac X下载页面&#xff0…

第十四章_缓存双写一致性之更新策略探讨

缓存双写一致性的理解 如果redis中有数据 需要和数据库中的值相同 如果redis中无数据 数据库中的值要是最新值&#xff0c;且准备回写redis 缓存按照操作来分&#xff0c;细分2种 只读缓存 读写缓存 同步直写策略 写数据库后也同步写redis缓存&#xff0c;缓存和数据库…

01:mysql基本操作---DDL

目录 前言: 1:SQL分类 2:类型 3:sql表的创建----简单版本 前言: 1:SQL语句可以单行或多行书写&#xff0c;以分号结尾。 2:SQL语句可以使用空格/缩进来增强语句的可读性。 3:MySQL数据库的SQL语句不区分大小写&#xff0c;关键字建议使用大写 4:注释: 单行注释:-- 注释…

RabbitMQ详解(三):消息模式(fanout、direct、topic、work)

消费模式 参考官网&#xff1a;https://www.rabbitmq.com/getstarted.html 简单模式 Simple, 参考RabbitMQ详解&#xff08;二&#xff09;&#xff1a;消息模式 Simple(简单)模式 简单模式是最简单的消息模式&#xff0c;它包含一个生产者、一个消费者和一个队列。生产者向队…

量化散户交易数据:追涨爆亏99%,杀跌少赚28倍?| 追涨杀跌一时爽,散户钱包火葬场?【邢不行】

你第一次炒股的经历是不是这样的&#xff1a; 你有一个朋友&#xff0c;他说在XX股票上大赚了一笔&#xff0c;你听后是既羡慕又不服。 于是你下载了炒股软件&#xff0c;看了眼这只股票&#xff0c;有点心动。但由于没有交易经验&#xff0c;股价又确实涨了不少&#xff0c;…

Python基础入门编程代码练习(四)

一、遍历列表 通过 input输入3个人信息&#xff0c;每个人有姓名和年龄&#xff0c;将信息存入字典中&#xff0c;并将将字典存入列表。 遍历列表&#xff0c;打印每个人的信息&#xff0c;打印格式如下&#xff1a; 张三 20李四 22王五 23 1. 输入三个人的信息 (输入 inpu…

qiankun 微前端 demo(Vue2)

前言 这是我最近刚开始学微前端&#xff08;qiankun框架&#xff09;做的一个小demo&#xff0c;做的时候还是遇到很多问题的&#xff0c;在网上也是看了很多别人的Blog&#xff0c;最后也是磨出来了&#x1f602;&#x1f602;&#x1f602;&#xff1b;这篇文章总统分为分为…

国产麒麟操作系统 myCat1.6读写分离

我的环境是麒麟操作系统&#xff0c;我只配置读写分离 一、使用说明&#xff0c;java环境&#xff0c;解压就能用 下载地址https://raw.githubusercontent.com/MyCATApache/Mycat-download/master/1.6-RELEASE/Mycat-server-1.6-RELEASE-20161028204710-linux.tar.gz mycat 是j…

OJ刷题之旅

题目 现在给你两种颜色的箩筐&#xff0c;需要的时候&#xff0c;就把一个个大小差一圈的筐叠上去&#xff0c;使得从上往下看时&#xff0c;边筐花色交错。这个工作现在要让计算机来完成&#xff0c;得看你的了。 输入 输入是一个个的三元组&#xff0c;分别是&#xff0c;外…

SpringCloud使用SkyWalking实现分布式链路追踪1

文章目录 一、MicrometerTracingBrave(Sleuth)链路追踪1、MicrometerTracingBrave和Zipkin的概论2、Docker搭建Zipkin服务3、MicrometerTracingBrave和Zipkin实现链路追踪 二、SkyWaking服务的安装与使用1、SkyWalking的概论2、Java探针的环境搭建3、Java探针实现日志监控4、Sk…

Netty——介绍和maxContentLength配置

官网 介绍 Netty框架的设计思路是基于NIO的事件驱动编程模型&#xff0c;核心组件包括&#xff1a; Channel&#xff1a;通道&#xff0c;负责网络数据的读写操作&#xff1b; EventLoop&#xff1a;事件循环&#xff0c;处理I/O事件和用户自定义事件&#xff1b; ChannelFut…

【子集树】输出一个序列的子序列

【子集树】输出一个序列的子序列 给一个序列 1 2 3 输出序列的子集 1 2 3 12 13 23 123 如何实现&#xff1f; 由上可以看出 类似于全排列 如何用全排列 实现子集输出&#xff1f; 也就是子集树&#xff1f; #include<iostream>using namespace std;const int N 1e5…

【C++技能树】令常规运算符用在类上 --类的六个成员函数II

Halo&#xff0c;这里是Ppeua。平时主要更新C语言&#xff0c;C&#xff0c;数据结构算法…感兴趣就关注我吧&#xff01;你定不会失望。 本篇导航 0.运算符重载1.赋值运算符 重载2.比较运算符 重载3.比较运算符 ! 重载4.比较运算符 < 重载5.比较运算符 < 重载6. 比较…

图片处理软件:分享6款非常实用的图片处理工具

目录 一、移动端 1、snapseed 2、一键抠图 3、pixlr 二、电脑端 1、图片编辑助手 2.GIMP 3、photopea 今天给大家分享6款非常实用的图片处理工具&#xff0c;其中包含移动端和电脑端&#xff0c;每一款都非常实用&#xff0c;希望对大家能有所帮助&#xff01; 一、移…

《编程思维与实践》1059.计算a的n次方的大整数

《编程思维与实践》1059.计算a的n次方的大整数 题目 思路 高精度的问题统一的解决思路是用一个数组去存大整数的每一位数,运算转化为对数组的操作. 可以从个位开始存(逆序),也可以从最高位开始存(顺序),以处理方便为主要考虑因素. 同时可以将大整数定义为一个结构体,包含位数,…

软件架构:理解分析三层结构观点

三层结构的简单描述及优点   三层体系结构&#xff0c;即用户层、应用层和数据库服务器。用户层主要指用户界面&#xff0c;它要求尽可能的简单&#xff0c;使最终用户不需要进行任何培训就能方便地访问信息&#xff1b;第二层就是应用服务器&#xff0c;也就是常说的中间件&…

webpack: 4 loader汇总(style-loader等)

所有的loader必须匹配规则&#xff0c;否则不生效 配置文件中&#xff0c;module中rules的use执行顺序是从后往前执行 url-loader 用于将文件转换为base64 URI的webpack加载程序。 options limit limit指定文件大小&#xff0c;小于limit的图片不会生成图片以base64格式被引入…

客观地说,应该看一看 Web3.0 了

武术圈有名言&#xff1a;“八极加劈挂&#xff0c;神鬼都害怕”。要是 Web3.0AGI 的话&#xff0c;世界将会变成什么样子&#xff1f; 数科星球原创作者丨苑晶编辑丨大兔 Web3.0 的价值开始受到重视&#xff0c;在最近&#xff0c;来自香港的好消息再次带火了这个领域的热度。…

VMware NSX-T Data Center 3.2.3 - 数据中心网络全栈虚拟化

VMware NSX-T Data Center 3.2.3 - 数据中心网络全栈虚拟化 重要更新&#xff1a;修复 136 个 bug。 请访问原文链接&#xff1a;https://sysin.org/blog/vmware-nsx-t-3/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org VMwa…