消息推送平台的实时数仓?!flink消费kafka消息入到hive

news2025/1/21 7:11:23

大家好,3y啊。好些天没更新了,并没有偷懒,只不过一直在安装环境,差点都想放弃了。

上一次比较大的更新是做了austin的预览地址,把企业微信的应用和机器人消息各种的消息类型和功能给完善了。上一篇文章也提到了,austin常规的功能已经更新得差不多了,剩下的就是各种细节的完善。

不知道大家还记不记得我当时规划austin时,所画出的架构图:

现在就剩下austin-datahouse这个模块没有实现了,也有挺多同学在看代码的时候问过我这个模块在哪…其实就是还没实现,先规划,牛逼先吹出去(互联网人必备技能)

消息推送平台🔥推送下发【邮件】【短信】【微信服务号】【微信小程序】【企业微信】【钉钉】等消息类型

  • https://gitee.com/zhongfucheng/austin/
  • https://github.com/ZhongFuCheng3y/austin

至于这个模块吧,我预想它的功能就是把austin相关的实时数据写到数据仓库里。一方面是做数据备份,另一方面是大多数的报表很多都得依赖数据仓库去做。实际上,生产环境也会把相关的数据写到数仓中。

而在公司里,要把数据写到数据仓库,这事对开发来说一般很简单。因为有数仓这个东西,那大多数都会有相关的基础建设了。对于开发而言,可能就是把日志数据写到Kafka,在相关的后台配置下这个topic,就能将这个topic的数据同步到数据仓库里咯。如果是数据库的话,那应该大数据平台有同步数据的功能,对普通开发来说也就配置下表名就能同步到数据仓库里咯。

反正使用起来很简单就是了。不过,我其实不知道具体是怎么做的。

但是不要紧啊,反正开源项目对于时间这块还是很充裕得啊:没有deadline,没有产品在隔壁催我写,没有相关的技术要跟我对接。那我不懂可以学,于是也花了几天看了下数仓这块内容。

在看数仓的同时,我之前在公司经常会听到数据湖这个词。我刚毕业的时候是没听过的,但这几年好像这个概念就火起来了。跟大数据那边聊点事的时候,经常会听到:数据入湖

那既然看都看了,顺便了解数据湖是个什么东西吧?对着浏览器一轮检索之后,我发现这个词还是挺抽象的,一直没找到让我耳目一新的答案,这个数据湖也不知道怎么就火起来了。我浏览了一遍之后,我大概可以总结出什么是数据湖,跟数据仓库有啥区别:

1、数据仓库是存储结构化的数据,而数据湖是什么数据都能存(非结构化的数据也能存)。结构化数据可以理解为我们的二维表JSON数据,非结构化的数据可以理解为图像文件之类的。

数据仓库在写入的时候,就要定义好schema了,而数据湖在写入的时候不需要定schema,可以等用到的时候再查出来。强调这点,说明数据湖对数据的schema约束更加灵活。

2、数据仓库和数据湖并不是替代关系。数据是先进数据湖,将数据加工(ETL)之后,一部分数据会到数据仓库中。

3、我们知道现有的数据仓库一般基于Hadoop体系的HDFS分布式文件系统去搭建的,而数据湖也得存储数据的嘛,一般也是依赖HDFS。

4、开源的数据湖技术比较出名的有hudiicebergDelta Lake

看完上面的描述,是不是觉得有点空泛。看似学到了很多,但是实际还是不知道数据湖有啥牛逼之处。嗯,我也是这么想的。总体下来,感觉数据湖就相当于数据仓库的ODS,围绕着这些数据定义了对应的meta信息,做元数据的管理。

说到ODS这个词了,就简单聊下数据仓库的分层结构吧。这个行业通用的,一般分为以下:

1、ODS(Operate Data Store),原始数据层,未经过任何加工的。

2、DIM(Dictionary Data Layer),维度数据层,比如存储地域、用户客户端这些维度的数据。

3、DWD(Data Warehouse Detail),数据明细层,把原始数据经过简单的加工(去除脏数据,空数据之后就得到明细数据)。

4、DWS(Data Warehouse Service),数据维度汇总层,比如将数据明细根据用户维度做汇总得到的汇总之后的数据。

5、ADS(Application Data Store),数据应用层,这部分数据能给到后端以接口的方式给到前端做可视化使用了。

至于为什么要分层,跟当初我们理解DAO/Service/Controller的思想差不多,大概就是复用便于后续修改变动

扯了那么多吧,聊会ausitn项目吧,我是打算怎么做的呢?因为我的实时计算austin-stream模块是采用Flink去做的,我打算austin-datahouse也是采用flink去做。

这几年在大数据领域湖仓一体流批一体这些概念都非常火,而对于austin来说,第一版迭代还不用走得这么急。我目前的想法是利用flinktableapi去对接Hive,通过SupersetMetabaseDataEase 其中一个开源的大数据可视化工具Hive的数据给读取出来,那第一版就差不多完成了。

现状

自从我决定开始写austin-data-house数据仓库模块,已经过了两周有多了。这两周多我都在被部署安装环境折磨,中途有很多次就想放弃了。

我初学编程,到现在工作了几年,我还是没变,一如既往地讨厌安装环境

花了这么长时间调试安装部署环境,实现的功能其实很简单:消费Kafka的消息,写入hive。(我在写全链路追踪功能实时引擎用的是flink,为了技术架构统一,我还是希望通过flink来实现。)

flink1.9开始支持hive。到目前为止,flink稳定的版本在1.16.0flink支持hive也就这两年的事。

austin所依赖的组件有很多(正常线上环境都会有这些组件,只是不用我们自己搭建而已)。各种组件的环境问题被我一一征服了,但有很大程度上的功劳是在docker-compose上。

说到数据仓库,第一时间肯定是想到hive。虽然我没装过hadoop/hive/hdfs大数据相关的组件,但稍微想想这都是复杂的。那安装hive自然就会想到有没有docker镜像,一键安装可多爽啊。

之前接入的flink也是跑在docker上的,把hive也找个镜像,两者融合融合不就行了嘛?

想法很好,我就开干了。

基础知识

flinkhive融合,实际上是借助hive catalog来打通hivehive catalog对接着hive metastore(hive存储元数据的地方)。

当我们使用flink创建出的元数据,会经由hive catalog 最终持久化到hive metastore,同时我们会利用hive catalog提供的接口对hive进行写入和读取。

来源:https://blog.51cto.com/u_15105906/5849229

安装hive环境

那时候简单搜了下,还真被我找到了hive的镜像,没想到这么幸运,还是支持docker-compose的,一键安装,美滋滋。

https://github.com/big-data-europe/docker-hive

我就简单复述下过程吧,比较简单:

1、把仓库拉到自己的服务器上

git clone git@github.com:big-data-europe/docker-hive.git

2、进入到项目的文件夹里

cd docker-hive

3、启动项目

docker-compose up -d

一顿下载之后,可以发现就启动成功了,通过docker ps 命令就看到运行几个镜像了。

没错,这就安装好hive了,是不是非常简单。具体启动了什么,我们可以简单看下docker-compose.yml文件的内容。

最后,我们可以连上hive的客户端,感受下快速安装好hive的成功感。

# 进入bash
docker-compose exec hive-server bash

# 使用beeline客户端连接
/opt/hive/bin/beeline -u jdbc:hive2://localhost:10000

深陷迷雾

hive安装好了之后,我就马不停蹄地想知道怎么跟flink进行融合了。我就搜了几篇博客看个大概,后来发现大多数博客的内容其实就是翻译了flink官网的内容。

不过,翻博客的过程中让我大致了解了一点:如果我要使用flink连接hive,那我要手动flink连接hivejar包导入到flink/lib目录下。

说实话,这还是比较麻烦的。我还以为只需要在我的工程里导入相关的依赖就好了,没想到还得自己手动把jar包下来下来,然后传入到flink的安装目录下。

我吭哧吭哧地做了,但把我写好的工程jar包传上去提交给jobmanager不是缺这就是少那依赖。我相信我能搞掂,反正就是版本依赖的问题嘛,我在行的。

后面又发现在flink工程项目里用maven引入hadoop依赖是不够的,flink新版本里默认打的镜像是没有hadoop的,要手动在flink环境目录下引入hadoop。这个也是麻烦的,但只要我在镜像里下载些环境,也不是不能干。

1、安装vim

apt-get update

apt-get install vim

2、安装hadoop

2.1、下载hadoop

wget https://archive.apache.org/dist/hadoop/common/hadoop-2.7.4/hadoop-2.7.4.tar.gz

2.2、解压hadoop

tar -zxf hadoop-2.7.4.tar.gz

2.3、配置环境变量

vim /etc/profile
export HADOOP_HOME=/opt/hadoop-2.7.4
export PATH=$HADOOP_HOME/bin:$PATH
export HADOOP_CLASSPATH=`hadoop classpath`
source /etc/profile

2.4、在flink的docker容器里还得把.bashrc也得改了才生效

过于乐观的我,搞了10天左右吧,终于顶不住了,下定决心:我一定要统一版本,不能修修补补了,该什么版本就走什么版本,推倒从来吧。我就按着flink官网来走,一步一步走下来不可能错的吧!

flink最新的版本是v1.17-SNAPSHOT,那我就挑上一个稳定的版本就行了!顺便一看,我之前写全链路追踪austin接入flink的时候,代码的还是14.3版本。但管不了这么多了,就用1.16.0版本吧。

首先,我发现我的flink镜像拉取的是最新的版本image: flink:latest。那我得找1.16.0版本的docker-compose来部署,版本就得统一,后面的事才好搞。这个好找,在官网很快就找到了:image: flink:1.16.0-scala_2.12

新的镜像搞下来了以后,我又吭哧地把相关的jar都手动地导入到flink容器里。另外,我发现官网写的pom依赖,压根就下载不下来的,这不对劲啊

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-table-api-java-bridge_2.12</artifactId>
  <version>1.16.0</version>
  <scope>provided</scope>
</dependency>

我开始以为是我的maven仓库配置问题,找遍了仓库在那个artifactId下,最大的也就只有1.14.x的版本。去找了下flinkissue,发现有人跟我一样的问题。

https://github.com/apache/flink/pull/21553

继续尝试提交我自己写好的flink.jar。毫无意外地,又报错了,有些是之前的报错,我很快地就能解决掉。

我一想,意识到是哪里没做好了:hive的版本,hadoop的版本,flink的版本这三者也要约束。那我转头一看,发现之前我从镜像里拉下来hive版本是2.3.2,里面装的hadoop版本是2.7.4。于是,我又统一了这三者的版本。信心很足,感觉一定能成。

再次提交,还是有问题,疯狂Google但就是一直找不到解决方案。能查出来的资料,网上的全都是“原始”安装部署的,就没有通过flink docker镜像跟hive融合的,而且也不是跨机器的(给出来的案例都是在同一台机器上,我是hive部署一台机器上,flink部署在另一台机器上)。

花了几天调试还是解决不掉,怎么搞呢?放弃又不甘心。咋整?继续推倒重来呗

在使用flink容器调试的过程中我已经发现了:

1、拉下来的docker镜像里的内容,跟官网所描述的jar包是有出入的,有的是要我手动去下载的。但当时我觉得既然版本已经限定了,那应该问题也不大。

2、hadoop环境变量在flink docker 容器下很难调试。每次重新推倒从来的时候,我都得手动配置一次,步骤也繁琐。即便我挂载了相关的jar包和整个目录

3、flink容器内重启和启动集群环境不可控,老是出现奇奇怪怪的问题。

那这一次,我就不用docker-compose部署flink了,直接在centos安装部署flink,继续整。

随着我每一次推倒重来,我就觉得我离成功越来越近越来越近。从环境变量报错缺失CALSS_PATH的问题,已经到了sql的语法的问题,从sql语法的问题到找不到远程地址namenode can't found的问题,从远程地址的问题,到HDFS调用不通的问题。最后,终于调试成功了。

下面就记录我能调试成功的安装过程,各种坑错误异常就不记录了(篇幅问题),这里也吐槽够了。

安装flink环境

1、下载flink压缩包

wget https://dlcdn.apache.org/flink/flink-1.16.0/flink-1.16.0-bin-scala_2.12.tgz

2、解压flink

tar -zxf flink-1.16.0-bin-scala_2.12.tgz

3、修改该目录下的conf下的flink-conf.yaml文件中rest.bind-address配置,不然远程访问不到8081端口,将其改为0.0.0.0

rest.bind-address: 0.0.0.0

4、将flink官网提到连接hive所需要的jar包下载到flinklib目录下(一共4个)

wget https://repo.maven.apache.org/maven2/org/apache/flink/flink-sql-connector-hive-2.3.9_2.12/1.16.0/flink-sql-connector-hive-2.3.9_2.12-1.16.0.jar

wget https://repo.maven.apache.org/maven2/org/apache/hive/hive-exec/2.3.4/hive-exec-2.3.4.jar

wget https://repo.maven.apache.org/maven2/org/apache/flink/flink-connector-hive_2.12/1.16.0/flink-connector-hive_2.12-1.16.0.jar 

wget https://repo.maven.apache.org/maven2/org/antlr/antlr-runtime/3.5.2/antlr-runtime-3.5.2.jar

5、按照官网指示把flink-table-planner_2.12-1.16.0.jarflink-table-planner-loader-1.16.0.jar 这俩个jar包移动其目录;

mv $FLINK_HOME/opt/flink-table-planner_2.12-1.16.0.jar $FLINK_HOME/lib/flink-table-planner_2.12-1.16.0.jar
mv $FLINK_HOME/lib/flink-table-planner-loader-1.16.0.jar $FLINK_HOME/opt/flink-table-planner-loader-1.16.0.jar

6、把后续kafka所需要的依赖也下载到lib目录下

wget https://repo1.maven.org/maven2/org/apache/flink/flink-connector-kafka/1.16.0/flink-connector-kafka-1.16.0.jar

wget https://repo1.maven.org/maven2/org/apache/kafka/kafka-clients/3.3.1/kafka-clients-3.3.1.jar

安装hadoop环境

由于hive的镜像已经锁死了hadoop的版本为2.7.4,所以我这边flink所以来的hadoop也是下载2.7.4版本

1、下载hadoop压缩包

wget https://archive.apache.org/dist/hadoop/common/hadoop-2.7.4/hadoop-2.7.4.tar.gz

2、解压hadoop

tar -zxf hadoop-2.7.4.tar.gz

安装jdk11

由于高版本的flink需要jdk 11,所以这边安装下该版本的jdk

yum install java-11-openjdk.x86_64
yum install java-11-openjdk-devel.x86_64

配置jdk、hadoop的环境变量

这一步为了能让flink在启动的时候,加载到jdkhadoop的环境。

1、编辑/etc/profile文件

vim /etc/profile

2、文件内容最底下增加以下配置:

JAVA_HOME=/usr/lib/jvm/java-11-openjdk-11.0.17.0.8-2.el7_9.x86_64
JRE_HOME=$JAVA_HOME/jre
CLASS_PATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
export JAVA_HOME JRE_HOME CLASS_PATH PATH
export HADOOP_HOME=/root/hadoop-2.7.4
export PATH=$HADOOP_HOME/bin:$PATH
export HADOOP_CLASSPATH=`hadoop classpath`

3、让配置文件生效

source /etc/profile

austin数据仓库工程代码

直接上austin仓库地址,文章篇幅就不贴代码了,该写的注释我都写了。

http://gitee.com/zhongfucheng/austin

这个工程代码量非常少,一共就4个核心文件pom.xml/hive-site.xml/AustinHiveBootStrap.java,要使用的时候注意该两处地方即可:

1、com.java3y.austin.datahouse.constants.DataHouseConstant#KAFKA_IP_PORT将这里改成自己的kafkaipport

2、hive-site.xml文件全局替换掉hive_ip为自己的hive地址,一共两处

部署工程代码到Flink

我们把jar包上传到服务器,然后使用命令提交jar包给flink执行。也可以打开flink的管理后台,在页面上提交jar包并启动。我这里就选择使用命令的方式来提交,主要因为在外网透出flink的端口,很容器被攻击(我已经重装系统几次了。。)

(flink命令在$FLINK_HOME/bin下)

./start-cluster.sh
./flink run austin-data-house-0.0.1-SNAPSHOT.jar

启动Kafka生产者写入测试数据

启动消费者的命令(将ipport改为自己服务器所部署的Kafka信息):

$KAFKA_HOME/bin/kafka-console-producer.sh --topic austinTraceLog  --broker-list ip:port

输入测试数据:

{"state":"1","businessId":"2","ids":[1,2,3],"logTimestamp":"123123"}

即将成功

到这一步,离胜利就非常近了,但还是有通信的问题:flink无法识别namenode/namenodedatanode之间的通信问题等等。于是我们需要做以下措施:

1、hive在部署的时候,增加datanode/namenode的通信端口,部署hive使用这个docker-compose文件的内容:

version: "3"

services:
  namenode:
    image: bde2020/hadoop-namenode:2.0.0-hadoop2.7.4-java8
    volumes:
      - namenode:/hadoop/dfs/name
    environment:
      - CLUSTER_NAME=test
    env_file:
      - ./hadoop-hive.env
    ports:
      - "50070:50070"
      - "9000:9000"
      - "8020:8020"
  datanode:
    image: bde2020/hadoop-datanode:2.0.0-hadoop2.7.4-java8
    volumes:
      - datanode:/hadoop/dfs/data
    env_file:
      - ./hadoop-hive.env
    environment:
      SERVICE_PRECONDITION: "namenode:50070"
    ports:
      - "50075:50075"
      - "50010:50010"
      - "50020:50020"
  hive-server:
    image: bde2020/hive:2.3.2-postgresql-metastore
    env_file:
      - ./hadoop-hive.env
    environment:
      HIVE_CORE_CONF_javax_jdo_option_ConnectionURL: "jdbc:postgresql://hive-metastore/metastore"
      SERVICE_PRECONDITION: "hive-metastore:9083"
    ports:
      - "10000:10000"
  hive-metastore:
    image: bde2020/hive:2.3.2-postgresql-metastore
    env_file:
      - ./hadoop-hive.env
    command: /opt/hive/bin/hive --service metastore
    environment:
      SERVICE_PRECONDITION: "namenode:50070 datanode:50075 hive-metastore-postgresql:5432"
    ports:
      - "9083:9083"
  hive-metastore-postgresql:
    image: bde2020/hive-metastore-postgresql:2.3.0
    ports:
      - "5432:5432"
  presto-coordinator:
    image: shawnzhu/prestodb:0.181
    ports:
      - "8080:8080"
volumes:
  namenode:
  datanode:

2、在部署flink服务器上增加hosts,有以下(ip为部署hive的地址):

127.0.0.1 namenode
127.0.0.1 datanode
127.0.0.1 b2a0f0310722

其中 b2a0f0310722datanode的主机名,该主机名会随着hivedocker而变更,我们可以登录namenode的后台地址找到其主机名。而方法则是在部署hive的地址输入:

http://localhost:50070/dfshealth.html#tab-datanode

3、把工程下的hive-site.xml文件拷贝到$FLINK_HOME/conf

4、hadoop的配置文件hdfs-site.xml增加以下内容(我的目录在/root/hadoop-2.7.4/etc/hadoop

<property>
    <name>dfs.client.use.datanode.hostname</name>
    <value>true</value>
    <description>only cofig in clients</description>
</property>

5、启动flink-sql的客户端:

./sql-client.sh

6、在sql客户端下执行以下脚本命令,注:hive-conf-dir要放在$FLINK_HOME/conf

CREATE CATALOG my_hive WITH (
    'type' = 'hive',
    'hive-conf-dir' = '/root/flink-1.16.0/conf'
);
use catalog my_hive;
create database austin;

7、重启flink集群

./stop-cluster.sh
./start-cluster.sh

8、重新提交执行flink任务

./flink run austin-data-house-0.0.1-SNAPSHOT.jar

数据可视化

到上面为止,我们已经把数据写入到hive表了,我们是不可能每一次都在命令行窗口里查询hive的数据。一般在公司里都会有可视化平台供我们开发/数仓/数据分析师/运营 去查询hive的数据。

我简单看了几个开源的可视化平台:Superset/Metabase/DataEase。最后选择了Metabase,无他,看着顺眼一些。

部署Metabase很简单,也是使用docker进行安装部署,就两行命令(后续我会将其加入到docker-compose里面)。

docker pull metabase/metabase:latest
docker run -d -p 5001:3000 --name metabase metabase/metabase

完了之后,我们就可以打开5001端口到Metabase的后台了。

我们可以在Metabase的后台添加presto进而连接hive去查询记录。

这个presto服务我们在搭建hive的时候已经一起启动了,所以这里直接使用就好了。

到这一步,我们就可以通过在页面上写sql把消息推送过程中埋点的明细数据查询出来

最后

这数据仓库整个安装环境和调试过程确实折腾人,多次推倒重来(甚至不惜重装系统重来)。还好最后输入Kafka一条消息,在hive表里能看到一条记录,能看到结果之后,折腾或许是值得的。

如果想学Java项目的,强烈推荐我的开源项目消息推送平台Austin(8K stars) ,可以用作毕业设计,可以用作校招,可以看看生产环境是怎么推送消息的。开源项目消息推送平台austin仓库地址:

消息推送平台🔥推送下发【邮件】【短信】【微信服务号】【微信小程序】【企业微信】【钉钉】等消息类型

  • https://gitee.com/zhongfucheng/austin/
  • https://github.com/ZhongFuCheng3y/austin

参考资料:

  • https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/connectors/table/hive/overview/
  • https://blog.51cto.com/u_15105906/5849229
  • https://blog.csdn.net/qq_38403590/article/details/126172610

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/511131.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

windows安装Anaconda

Anacond是什么&#xff1f; 和Python有啥关系&#xff1f; 1、Anacond 是一个python的发行版&#xff0c;包括了python和很多常见的软件库, 和一个包管理器conda。常见的科学计算类的库都包含在里面了&#xff0c;使得安装比常规python安装要容易。 2、Anaconda是专注于数据分…

分布式系统概念和设计——时间和全局状态(分布式系统中的时间问题)

分布式系统概念和设计 时间和全局状态 全局物理时间的缺乏使我们很难查明分布式程序的执行时状态。 我们经常需要知道当进程B处在某种状态依赖进程是什么状态&#xff0c;但不能通过依靠物理时钟理解一个同一个时刻到底是什么情况。 维护分布数据一致性算法检查发送给服务器的…

数学(三) -- LC[1010][1015] 可被 K 整除的最小整数

1 可被 K 整除的最小整数 1.1 题目描述 题目链接&#xff1a;https://leetcode.cn/problems/smallest-integer-divisible-by-k/description/ 1.2 思路分析 模运算 如果让你计算 1234 ⋅ 6789 1234 \cdot 6789 1234⋅6789 的个位数&#xff0c;你会如何计算&#xff1f; 由于…

c高级day2

#include <stdio.h> #include <stdlib.h> #include <string.h>int arrMAX_1(void *p,int n,int m,int x,int y); int arrMAX_2(void *p,int n,int m,int x,int y); int main(int argc, const char *argv[]) {int n0,m0;printf("请输入行数i 列数j\n&quo…

Baumer工业相机堡盟工业相机如何进行多个工业相机IP地址配置

Baumer工业相机堡盟工业相机如何进行多个工业相机IP地址配置 Baumer工业相机Baumer工业相机进行多相机IP配置的技术背景Baumer工业相机如何进行多相机IP配置1.配置Baumer工业相机连接的PC端IP地址2.配置Baumer工业相机的IP地址 Baumer工业相机 Baumer工业相机堡盟相机是一种高…

R 中的探索性相关分析

动动发财的小手&#xff0c;点个赞吧&#xff01; 本文[1] 相关分析是探索两个或多个变量之间关系的最基本和最基础的方法之一。您可能已经在某个时候使用 R 执行过相关分析&#xff0c;它可能看起来像这样&#xff1a; cor_results <- cor.test(my_data$x, my_data$y, …

手机上调试pc端电脑上的项目

文章目录 前言1、window r 打开电脑命令窗口并输入cmd点击确定或者敲击回车键2、在cmd命令行面板上输入ipconfig获取本电脑的ip地址3、在手机浏览器中输入http://192.168.XX.XX:8080 即可 前言 手机上调试电脑运行的项目的前提条件是手机和电脑公用一个局域网&#xff08;也就…

APP 性能优化你掌握的怎么样?简单聊聊?

产品性能是每个技术团队比较关心的一件事&#xff0c;不管是产品上线前到上线后&#xff0c;都需要对产品进行性能监控和优化&#xff0c;如果产品在运行过程中出现了问题&#xff0c;是很影响用户的体验感受。 所以在一些大厂技术团队中&#xff0c;是非常看重个人性能优化的…

面向开发人员的 ChatGPT 提示词教程中文版

面向开发人员的 ChatGPT 提示词教程中文版 1. 指南1-1. 提示的指南1-2. 配置1-3. 提示语原则原则 1: 写出清晰而具体的指示技巧 1: 使用分隔符来清楚地表明输入的不同部分技巧 2: 要求提供结构化的输出技巧 3: 要求模型检查条件是否得到满足技巧 4: "少许样本"提示 原…

为你推荐一款最好用的免费截图工具-Snipaste,截图高清、智能模糊还支持滚动长截图!!!

写文章经常需要插入截图&#xff0c; 但是常常很难有顺手的截图工具&#xff0c; 常见的难题是&#xff1a; 很难滚动长屏截图&#xff0c; 截图中马赛克处理很麻烦&#xff0c; 输出的截图图像质量差。 经过大量的工具使用对比&#xff0c; 这里推荐一个最好用的截图工具。 Sn…

Fotran学习:chapter8函数

1.子程序(subrountine)的使用 把常常用于使用、具有特定功能的程序代码独立出来&#xff0c;封装程子程序&#xff0c;以后调用使用call即可。 program chapter4_exercise !主程序implicit nonecall sub1()call sub2()pauseend program chapter4_exercisesubroutine sub1() !子…

产品经理制,互联网公司发扬光大的

产品经理制&#xff0c;在互联网公司发扬光大 张小龙被称作&#xff1a;七星产品经理 其实&#xff0c;中小企业老板基本是首席产品经理 趣讲大白话&#xff1a;像带孩子一样做产品 【趣讲信息科技160期】 **************************** 产品经理制核心问题解决的是&#xff1a…

STM32F4_随机数发生器(RNG)

目录 1. 随机数发生器RNG是什么 2. RNG随机发生器框图 3. 运行RNG 4. RNG寄存器 4.1 RNG控制寄存器&#xff1a;RNG_CR 4.2 RNG状态寄存器&#xff1a;RNG_SR 4.3 RNG数据寄存器&#xff1a;RNG_DR 5. 库函数配置随机数发生器 6. 实验程序 6.1 main.c 6.2 RNG.c 6.…

植物奶站上风口

不知不觉间&#xff0c;植物奶无处不在。逛街&#xff0c;便利店里有燕麦奶、椰奶、豆奶&#xff0c;星巴克、肯德基有燕麦拿铁&#xff1b;打开小红书&#xff0c;有人做各种植物奶产品的测评结果&#xff0c;有人分享优质植物奶的自制方法…… 这场“风”并非空穴而来。 一…

软件工程开发文档写作教程(07)—招投标文件写作规范

本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl本文参考资料&#xff1a;电子工业出版社《软件文档写作教程》 马平&#xff0c;黄冬梅编著 招投标文件概述 国内的软件项目招投标文件的写作规则并不存在行业标准。许多大型企业的信息…

面向开发人员的 ChatGPT 提示词教程 - ChatGPT Prompt Engineering for Developers

面向开发人员的 ChatGPT 提示词教程 - ChatGPT Prompt Engineering for Developers 1. 指南(原文: Guidelines)1-1. 提示的指南(原文: Guidelines for Prompting)1-2. 配置1-3. 提示语原则(原文: Prompting Principles)原则 1: 写出清晰而具体的指示(原文: Write clear and spe…

【近期解决的小问题】

文章目录 写在前面1. Win10中USB转串口设备安装完成驱动显示感叹号&#xff08;USB不能用&#xff09;背景尝试过的方法其他解决方法 2. 安装Win7虚拟机“缺少所需的CD/DVD驱动器设备驱动程序”背景尝试过的方法 3. WMware安装Kali Linux后黑屏左上角光标闪烁背景尝试过的方法 …

Java设计模式 12-模版模式

模板模式 一、豆浆制作问题 编写制作豆浆的程序&#xff0c;说明如下: 1)制作豆浆的流程 选材—>添加配料—>浸泡—>放到豆浆机打碎 2)通过添加不同的配料&#xff0c;可以制作出不同口味的豆浆 3)选材、浸泡和放到豆浆机打碎这几个步骤对于制作每种口味的豆浆都是一…

关于使用SSM框架搭建的项目的运行方法

目录 运行环境配置 1、安装 IDEA 开发工具 中文版设置 JDK直接下载 2、安装 MYSQL 数据库 2.1 下载安装 2.2 配置环境变量 2.4 安装 MySQL 2.4 进入 MySQL 2.5 常见问题 3、安装Tomcat 4、IDEA配置MYSQL 4.1、常见错误 5、IDEA配置TOMCAT 5.1、常见报错 一 运行环…

2023年最新无脑安装 Go lang 环境配置并编写、运行、打包第一个 Golang 程序详细步骤,附带图文教程

文章目录 下载安装Golang配置 Golang 环境GO111MODULEGOPROXY开启 Go mod 模式及设置包下载国内镜像配置 Vscode Golang 环境 Bug 集锦The "gopls" command is not available.Run "go get -v golang.org/x/tools/gopls" to install. GO语言也称为Golang&am…