PocketFlow 性能
通过引入超参数优化组件,不仅避免了高门槛、繁琐的人工调参工作,同时也使得 PocketFlow 在各个压缩算法上全面超过了人工调参的效果。以图像分类任务为例,在 CIFAR-10 和 ImageNet 等数据集上,PocketFlow 对 ResNet 和 MobileNet 等多种 CNN 网络结构进行有效的模型压缩与加速。
在 CIFAR-10 数据集上,PocketFlow 以 ResNet-56 作为基准模型进行通道剪枝,并加入了超参数优化和网络蒸馏等训练策略,实现了 2.5 倍加速下分类精度损失 0.4%,3.3 倍加速下精度损失 0.7%,且显著优于未压缩的 ResNet-44 模型; 在 ImageNet 数据集上,PocketFlow 可以对原本已经十分精简的 MobileNet 模型继续进行权重稀疏化,以更小的模型尺寸取得相似的分类精度;与 Inception-V1、ResNet-18 等模型相比,模型大小仅为后者的约 20~40%,但分类精度基本一致(甚至更高)。
相比于费时费力的人工调参,PocketFlow 框架中的 AutoML 自动超参数优化组件仅需 10 余次迭代就能达到与人工调参类似的性能,在经过 100 次迭代后搜索得到的超参数组合可以降低约 0.6% 的精度损失;通过使用超参数优化组件自动地确定网络中各层权重的量化比特数,PocketFlow 在对用于ImageNet 图像分类任务的
ResNet