Linux基础IO【重定向及缓冲区理解】

news2025/1/11 14:13:43

✨个人主页: 北 海
🎉所属专栏: Linux学习之旅
🎃操作环境: CentOS 7.6 阿里云远程服务器

成就一亿技术人


文章目录

  • 🌇前言
  • 🏙️正文
    • 1、文件描述符
      • 1.1、先描述,再组织
      • 1.2、files_struct
      • 1.3、分配规则
      • 1.4、一切皆文件
    • 2、重定向
      • 2.1、重定向的本质
      • 2.2、利用指令重定向
      • 2.3、利用函数重定向
    • 3、缓冲区
      • 3.1、缓冲区存在的意义
      • 3.2、缓冲区刷新策略
      • 3.3、普通缓冲区与内核级缓冲区
  • 🌆总结


🌇前言

文件描述符 fd 是基础IO中的重要概念,一个 fd 表示一个 file 对象,如常用的标准输入、输出、错误流的 fd 分别为 012,实际进行操作时,OS 只需要使用相应的 fd 即可,不必关心具体的 file,因此我们可以对标准流实施 重定向,使用指定的文件流,在实际 读/写 时,为了确保 IO 效率,还需要借助 缓冲区 进行批量读取,最大化提高效率。关于上述各种概念,将会在本文中详细介绍,且听我娓娓道来

IO


🏙️正文

1、文件描述符

在使用 C语言 相关文件操作函数时,可以经常看到 FILE 这种类型,不同的 FILE* 表示不同的文件,实际进行读写时,根据 FILE* 进行操作即可

#include<iostream>
#include <cstdio>

using namespace std;

int main()
{
    //分别打开三个 FILE 对象
    FILE* fp1 = fopen("test1.txt", "w");
    FILE* fp2 = fopen("test2.txt", "w");
    FILE* fp3 = fopen("test3.txt", "w");

    //对不同的 FILE* 进行操作
    //……

    //关闭
    fclose(fp1);
    fclose(fp2);
    fclose(fp3);
    fp1 = fp2 = fp3 = NULL;

    return 0;
}

那么在 C语言 中,OS 是如何根据不同的 FILE* 指针,对不同的 FILE 对象进行操作的呢?

  • 答案是 文件描述符 fd,这是系统层面的标识符,FILE 类型中必然包含了这个成员

FILE
如何证明呢?实践出真知,在上面代码的基础上,加入打印语句

注:stdin 等标准流在 C语言 中被覆写为 FILE 类型

//标准文件流
cout << "stdin->fd: " << stdin->_fileno << endl;
cout << "stout->fd: " << stdout->_fileno << endl;
cout << "stderr->fd: " << stderr->_fileno << endl;
cout << "===================================" << endl;
cout << "此时标准流的类型为:" << typeid(stdin).name() << endl;
cout << "此时文件流的类型为:" << typeid(fp1).name() << endl;
cout << "===================================" << endl;
//自己打开的文件流
cout << "fp1->fd: " << fp1->_fileno << endl;
cout << "fp2->fd: " << fp2->_fileno << endl;
cout << "fp3->fd: " << fp3->_fileno << endl;

结果
可以看出,FILE 类型中确实有 fd 的存在

文件描述符 是如何设计的?新打开的文件描述符为何是从 3 开始?别急,接着往下看

1.1、先描述,再组织

操作系统是一个伟大的产物,它可以调度各种资源完成各种任务,但资源太多、任务太重,不合理的分配会导致效率低下,因此在进行设计时,必须确保 OS 操作时的高效性

比如现在学习的 文件系统,倘若不进行设计的话,在进行 IO 时,OS 必须先将所有文件扫描一遍,找到目标文件后才能进行操作,这是非常不合理的

因此,根据 先描述、再组织 原则,OS 将所有的文件都统一视为 file 对象,获取它们的 file* 指针,然后将这些指针存入指针数组中,可以进行高效的随机访问和管理,这个数组为 file* fd_array[],而数组的下标就是神秘的 文件描述符 fd

当一个程序启动时,OS 会默认打开 标准输入、标准输出、标准错误 这三个文件流,将它们的 file* 指针依次存入 fd_array 数组中,显然,下标 0、1、2 分别就是它们的文件描述符 fd;后续再打开文件流时,新的 file* 对象会存入当前未被占用的最小下标处,所以用户自己打开的 文件描述符一般都是从 3 开始

除了文件描述符外,还需要知道文件权限、大小、路径、引用计数、挂载数等信息,将这些文件属性汇集起来,就构成了 struct files_struct 这个结构体,而它正是 task_struct 中的成员之一

1.2、files_struct

files_struct 结构体是对已打开文件进行描述后形成的结构体,其中包含了众多文件属性,本文探讨的是 文件描述符 fd

files_strutc
进程的 PCB 信息中必然包含文件操作相关信息,这就是 files_struct

注:文件被打开后,并不会加载至内存中(这样内存早爆了),而是静静的躺在磁盘中,等待进程与其进行 IO,而文件的 inode 可以找到文件的详细信息:所处分区、文件大小、读写权限等,关于 inode 的更多详细信息将会在 【深入理解文件系统】 中讲解

1.3、分配规则

fd 的分配规则为:先来后到,优先使用当前最小的、未被占用的 fd

存在下面两种情况:

  1. 直接打开文件 file.txt,分配 fd3
  2. 先关闭标准输入 stdin 中原文件执行流(键盘),再打开文件 file.txt,分配 fd0,因为当前 0 为最小的,且未被占用的 fd
#include<iostream>
#include <cstdio>
#include <cassert>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

using namespace std;

int main()
{
    //先打开文件 file.txt
    int fd = open("file.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);
    assert(fd != -1);   //存在打开失败的情况

    cout << "单纯打开文件 fd: " << fd << endl;

    close(fd);  //记得关闭

    //先关闭,再打开
    close(0);   //关闭1号文件执行流
    fd = open("file.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);

    cout << "先关闭1号文件执行流,再打开文件 fd: " << fd << endl;

    close(fd);

    return 0;
}

结果
注意: 假若将标准输出 stdout 中的原文件执行流(显示器)关闭了,那么后续的打印语句将不再向显示器上打印,而是向此时 fd1 的文件流中打印

//关闭 显示器 写入数据
close(1);

int fd = open("file.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);
assert(fd != -1);   //存在打开失败的情况

cout << "单纯打开文件 fd: " << fd << endl;
cout << "you can see me! not on screen" << endl;

close(fd);  //记得关闭

结果
这其实就是 重定向 的基本操作

1.4、一切皆文件

如何理解 Linux 中一切皆文件这个概念?

  • 现象:即使是标准输入(键盘)、标准输出(显示器) 在 OS 看来,不过是一个 file 对象
  • 原理:无论是硬件(外设),还是软件(文件),对于 OS 来说,只需要提供相应的 读方法写方法 就可以对其进行驱动,打开文件流后,将 file* 存入 fd_array 中管理即可,因此在 Linux 中,一切皆文件

多态


2、重定向

在学习重定向前,首先要明白 标准输入、输出、错误 的用途

  • 标准输入(stdin)-> 设备文件 -> 键盘文件
  • 标准输出(stdout)-> 设备文件 -> 显示器文件
  • 标准错误(stderr)-> 设备文件 -> 显示器文件

标准输入:从键盘中读取数据
标准输出:将数据输出至显示器中
标准错误:将可能存在的错误信息输出至显示器中

标准输出 与 标准错误 都是向显示器中输出数据,为什么不合并为一个?

  • 因为在进行排错时,可能需要单独查看错误信息,若是合并在一起,查看日志时会非常麻烦;但如果分开后,只需要将 标准错误 重定向后,即可在一个单独的文件中查看错误信息

C/C++ 中进行标准输入、输出、错误对应函数:
标准输入:scanf / cin
标准输出:printf / cout
标准错误:perror / cerr

使用 perror / cerr 函数即可直接向标准错误流中打印信息

2.1、重定向的本质

前面说过,OS 在进行 IO 时,只会根据标准输入、输出、错误对应的文件描述符 012 来进行操作,也就是说 OS 作为上层不必关心底层中具体的文件执行流信息(fd_array[] 中存储的对象) 因此我们可以做到 “偷梁换柱”,将这三个标准流中的原文件执行流进行替换,这样就能达到重定义的目的了

原理

2.2、利用指令重定向

下面直接在命令行中实现输出重定向,将数据输出至指定文件中,而非屏幕中

echo you can see me > file.txt

结果
可以看到数据直接输出至文件 file.txt

当然也可以 file.txt 中读取数据,而非键盘

cat < file.txt

结果
现在可以理解了,> 可以起到将标准输出重定向为指定文件流的效果,>> 则是追加写入
< 则是从指定文件流中,标准输入式的读取出数据

除此之外,我们还可以利用程序进行操作,在运行后进行重定向即可

#include <iostream>

using namespace std;

int main()
{
    cout << "标准输出 stdout" << endl;
    cerr << "标准错误 stderr" << endl;
    return 0;
}

直接运行的结果,此时的标准输出和标准错误都是向显示器上打印
结果
利用命令行只对 标准输出 进行重定向,file.txt 中只收到了来自 标准输出 的数据,这是因为 标准输出标准错误 是两个不同的 fd,现在只重定向了 标准输出 1

结果
标准错误 也进行 重定向,打印内容至 file.txt

结果
标准输出 打印至 file.txt 中,标准错误 打印至 log.txt

结果

以上只是简单演示一下如何通过命令行进行 重定向,在实际开发中进行重定向操作时,使用的是函数 dup2

2.3、利用函数重定向

系统级接口 int dup2(int oldfd, int newfd)

演示

函数解读:将老的 fd 重定向为新的 fd,参数1 oldfd 表示新的 fd,而 newfd 则表示老的 fd,重定向完成后,只剩下 oldfd,因为 newfd 已被覆写为 oldfd 了;如果重定向成功后,返回 newfd,失败返回 -1

参数设计比较奇怪,估计作者认为 newfd 表示重定向后,新的 fd

下面来直接使用,模拟实现报错场景,将正常信息输出至 log.normal,错误信息输出至 log.error

#include <iostream>
#include <cstdlib>
#include <cerrno>
#include <cassert>
#include <cstring>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

using namespace std;

int main()
{
    //打开两个目标文件
    int fdNormal = open("log.normal", O_WRONLY | O_CREAT | O_TRUNC, 0666);
    int fdError = open("log.error", O_WRONLY | O_CREAT | O_TRUNC, 0666);
    assert(fdNormal != -1 && fdError != -1);

    //进行重定向
    int ret = dup2(fdNormal, 1);
    assert(ret != -1);
    ret = dup2(fdError, 2);
    assert(ret != -1);

    for(int i = 10; i >= 0; i--)
        cout << i << " ";  //先打印部分信息
    cout << endl;

    int fd = open("cxk.txt", O_RDONLY); //打开不存在的文件
    if(fd == -1)
    {
        //对于可能存在的错误信息,最好使用 perror / cerr 打印,方便进行重定向
        cerr << "open fail! errno: " << errno << " | " << strerror(errno) << endl;
        exit(-1);   //退出程序
    }

    close(fd);

    return 0;
}

结果

在开发大型项目时,将 错误信息 单独剥离出来是一件很重要的事

学习了 重定向 相关知识后,我们可以对 【简易版 bash】 进行功能更新(已于 2023.3.28 更新)


3、缓冲区

3.1、缓冲区存在的意义

在【基础IO】 中还存在一个重要概念:缓冲区

缓冲区 其实就是一个 buffer 数组,配合不同的刷新策略,起到提高 IO 效率的作用

感性理解:

假设你家养有一条二哈,当你在投喂食物时,如果你每次都只往嘴里丢入一粒狗粮,那么你的整个喂食过程将持续非常长的时间,这已经严重影响了你写代码的时间,你一天啥都不做,就光喂狗去了;于是你想了一个办法:给它安排了一个狗碗(缓冲区),每次都只需将狗粮倒入其中,等待它自己进食即可,这样一来不但提高了二哈的进食效率,同时也给你写代码留足了时间;类似的例子还有很多,比如如果没有垃圾桶,那么你扔的每个垃圾都得跑到垃圾站中去处理;如果货车没有货箱,那么一批货得拉好几天;如果手机没有电池,那么再高级的功能也摆脱不了充电线的桎梏

图解

理性理解:
CPU 计算速度非常快!而磁盘的读取速度相对于 CPU 来说是非常非常慢的,因此需要先将数据写入缓冲区中,依据不同的刷新策略,将数据刷新至内核缓冲区中,供 CPU 进行使用,这样做的是目的是尽可能的提高效率,节省调用者的时间

本来 IO 就慢,如果没有缓冲区的存在,那么速度会更慢,下面通过一个代码来看看是否进行 IO 时,CPU 的算力差距

#include <iostream>
#include <unistd.h>
#include <signal.h>

using namespace std;

int count = 0;

int main()
{
    //定一个 1 秒的闹钟,查看算力
    alarm(1);   //一秒后闹钟响起
    while(true)
    {
        cout << count++ << endl;
    }
    return 0;
}

最终在 1s 内,count 累加了 10w+ 次(有 IO 的情况下)
闹钟

下面改变程序,取消 IO

int count = 0;

void handler(int signo)
{
    cout << "count: " << count << endl;
    exit(1);
}

int main()
{
    //定一个 1 秒的闹钟,查看算力
    signal(14, handler);
    alarm(1);   //一秒后闹钟响起
    while(true) count++;
    
    return 0;
}

最终在没有 IO 的情况下,count 累加了 5亿+ 次,由此可以看出频繁 IOCPU 计算的影响有多大,假若没有缓冲区,那么整个累加值将会更多(因为需要花费更多的时间在 IO 上)

结果

因此在进行 读取 / 写入 操作时,常常会借助 缓冲区 buffer

#include <iostream>
#include <cassert>
#include <cstdio>
#include <cstring>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

using namespace std;

int main()
{
    int fd = open("file.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);
    assert(fd != -1);

    char buffer[256] = { 0 };   //缓冲区
    int n = read(0, buffer, sizeof(buffer));    //读取信息至缓冲区中
    buffer[n] = '\0';

    //写入成功后,在写入文件中
    write(fd, buffer, strlen(buffer));

    close(fd);
    return 0;
}

结果

3.2、缓冲区刷新策略

缓冲区有多种刷新策略,比如 C语言scanf 的缓冲区刷新策略为:遇到空白字符或换行就刷新,因此在输入时需要按一下回车,缓冲区中的数据才能刷新至内核缓冲区中,而 printf 的刷新策略为 行缓冲,即遇到 \n 才会进行刷新

总体来说,缓冲区的刷新策略分为以下三种:

  1. 无缓冲 -> 没有缓冲区
  2. 行缓冲 -> 遇到 \n 才进行刷新,一次冲刷一行
  3. 全缓冲 -> 缓冲区满了才进行刷新

一般而言,显示器的刷新策略为 行缓冲,而普通文件的刷新策略为 全缓冲

一个简单的 demo 观察 行缓冲

#include <iostream>
#include <unistd.h>

using namespace std;

int main()
{
    while(true)
    {
        //未能触发行缓冲的刷新策略,只能等缓冲区满了被迫刷新
        printf("%s", "hehehehe");
        sleep(1);
    }

    return 0;
}

运行结果:无内容打印

结果
稍微改一下代码

while(true)
{
    //能触发行缓冲的刷新策略
    printf("%s\n", "hehehehe");
    sleep(1);
}

运行结果:每隔一秒,打印一次

结果

3.3、普通缓冲区与内核级缓冲区

每一个 file 对象中都有属于自己的缓冲区及刷新策略,而在系统中,还存在一个内核级缓冲区,这个缓冲区才是 CPU 真正进行 IO 的区域

IO 流程:

  • 先将普通缓冲区中的数据刷新至内核级缓冲区中,CPU 再从内核级缓冲区中取数据进行运算,然后存入内核级缓冲区中,最后再由内核级缓冲区冲刷给普通缓冲区

图解
出自知乎 《Linux 实现原理 — I/O 处理流程与优化手段》

这里有一段比较有意思的代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <unistd.h>

using namespace std;

int main()
{
    fprintf(stdout, "hello fprintf\n");
    const char* str = "hello write\n";
    write(1, str, strlen(str));

    fork(); //创建子进程
    return 0;
}

当我们直接运行程序时,结果如下:

结果

而当我们进行重定向后,结果如下:

结果

重定向前后出现两种截然不同的打印结果

原因分析:

  • 显示器刷新策略为 行缓冲,而普通文件为 全缓冲
  • 直接运行程序时:此时是向 显示器 中打印内容,因为有 \n,所以两条语句都直接进行了冲刷
  • 进行重定向后:此时是向 普通文件 中打印内容,因为普通文件是写满后才能刷新,并且 fprintf 有属于自己的缓冲区,这就导致 fork() 创建子进程后,父子进程的 fprintf 缓冲区中都有内容,当程序运行结束后,统一刷新,于是就是打印了两次 hello fprintf

注:系统级接口是没有自己的缓冲区的,直接冲刷至内核级缓冲区中,比如 write,所以创建子进程对 write 的冲刷没有任何影响

C语言 中的 FILE 类型设计还是比较复杂的,需要考虑很多种情况,不过本质上都是在调用系统级接口,我们现在已经可以模拟实现一个简易版 myFILE 结构体了,具体实现步骤将在下文中揭晓


🌆总结

以上就是本次有关 Linux 基础IO【重定向及缓冲区理解】的全部内容了,在这篇文章中,我们深入理解了文件描述符的概念,学习了重定向的多种方法,最后还学习了缓冲区的相关知识,清楚了普通文件与特殊文件的不同刷新策略。如果你对于本文中所提到的知识点还有疑惑的话,欢迎在评论区或私信中发表你的看法,我们可以相互探讨学习


星辰大海

相关文章推荐

Linux基础IO【文件理解与操作】

Linux【模拟实现简易版bash】

Linux进程控制【进程程序替换】

Linux进程控制【创建、终止、等待】

**

===============
**

Linux进程学习【进程地址】

Linux进程学习【环境变量】

Linux进程学习【进程状态】

Linux进程学习【基本认知】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/475650.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java数组的学习(基础)

目录 第一章&#xff1a;数组的概念介绍 1.数组的概念 2.数组的初始化/数组的创建/数组的定义 第二章&#xff1a;数组的使用 数组添加元素的方法/数组的赋值 数组的遍历 数组之选择排序的升序 数组之冒泡排序的升序 数组的最小值 数组的反转 数组中常见的异常 第三…

Python程序员想要转行,可以从这几个方面着手

最近有很多朋友问我一个问题&#xff0c;不论是我们做程序员还是做产品经理或者其他行业&#xff0c;到了30岁或35岁之后&#xff0c;都会面临各种各样的问题&#xff0c;比如达到职业天花板。有没有一种方法能够解决这种问题呢&#xff1f;我想分享一下我的观点和身边的案例。…

《Netty》从零开始学netty源码(四十七)之PooledByteBuf的方法

setBytes() 从channel中读取数据并写到PooledByteBuf中&#xff0c;分配缓存的过程与getBytes一样&#xff0c;只是duplicate为false。 capacity() 动态更新容量&#xff0c;根据新传入的容量值更改length。 如果新容量值与旧值相同则无需扩容如果为非池化内存则根据新容量值…

Zabbix部署详解

文章目录 Zabbix安装部署一、zabbix-server端部署二、zabbix-agent端部署 Zabbix安装部署 环境准备 VMware Workstation Pro 15.0 版本 系统 Centos7 内存 4G 处理器 2G 硬盘 50G 网络适配器 NAT 两台服务器&#xff0c;一台做zabbix-server、一台做zabbix-agent 关闭防火墙、…

【华为OD机试真题】信号发射和接收(javaC++python)100%通过率 超详细代码注释

信号发射和接收 知识点数组栈 单调栈时间限制: 1s 空间限制: 256MB 限定语言:不限 题目描述: 有一个二维的天线矩阵,每根天线可以向其他天线发射信号也能接收其他天线的信号,为了简化起见,我们约定每根天线只能向东和向南发射信号,换言之,每根天线只能接收东向或南向发…

unity-VRTK-simulator开发学习日记2(抛物线 导包|使用|调用方法)

导包 使用抛物线 1.层级目录下添加抛物线曲线 2.将跟踪控制器 给到抛物线的“跟随资源” &#xff08;选择哪只手射出射线&#xff09; 3.激活按键 找到模拟手柄按键 找到simulator的交互的几个按键&#xff08;ButtonOne为例&#xff09; value&#xff0c;默认值为false&a…

Doris(20):Doris的函数—数学函数

1 查看函数名 show builtin functions in test_db; 2 abs(double a) 功能: 返回参数的绝对值 返回类型:double类型 使用说明:使用该函数需要确保函数的返回值是整数。 3 acos(double a) 功能: 返回参数的反余弦值 返回类型:double类型 MySQL 中反余弦函数 ACOS(…

【五一创作】使用Scala二次开发Spark3.3.0实现对MySQL的upsert操作

使用Scala二次开发Spark实现对MySQL的upsert操作 背景 在我们的数仓升级项目中&#xff0c;遇到了这样的场景&#xff1a;古人开发的任务是使用DataStage运算后&#xff0c;按照主键【或者多个字段拼接的唯一键】来做insert then update&#xff0c;顾名思义&#xff0c;也就…

能上网的ChatGPT,会带来什么改变

最近关注AI的人&#xff0c;应该会注意到这条新闻。 ChatGPT官方推出新模式—Default&#xff08;GPT-3.5&#xff09;with browsing 这个是之前ChatGPT没有的功能&#xff0c;ChatGPT以前的训练数据是在2021年左右&#xff0c;并不知道最近的新闻。 现在ChatGPT 能够联网以…

AIGC提词生成图片(人物照片)练习笔记

文生图, 图生图 等 AIGC 创作大火, 也来体验一下吧. 本文记录了环境搭建过程与使用心得. 如果动手能力弱或只想省心, 有 环境要求 列出来我的环境吧: CPU, AMD Ryzen 7 5800X 8-Core ProcessorRAM, 32GGPU, NVIDIA GeForce RTX 2070 SUPER (8G)OS, Windows 11 专业版开发环境…

Qt MSVC开发

环境搭建 安装Virsual Studio&#xff0c;版本可以选择最新版本&#xff0c;我安装的时vs2022&#xff0c;安装时需要勾选 C 桌面开发 安装QT, 下载地址&#xff1a;https://download.qt.io/official_releases/online_installers/&#xff0c;安装时需要选择MSVC 2019 64-bit。…

Packet Tracer - 配置 RIPv2

Packet Tracer - 配置 RIPv2 目标 第 1 部分&#xff1a;配置 RIPv2 第 2 部分&#xff1a;验证配置 拓扑图 背景信息 尽管在现代网络中极少使用 RIP&#xff0c;但是作为了解基本网络路由的基础则十分有用。 在本活动中&#xff0c;您将使用适当的网络语句和被动接口配置…

【LeetCood206】反转链表

题目 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 答案1&#xff1a; 新建链表&#xff0c;遍历原链表&#xff0c;一个一个头插到新建的链表.直到结点为null public ListNode reverseList(ListNode head) {ListNode secondListHead n…

【细读Spring Boot源码】监听器合集-持续更新中

前言 监听器汇总 归属监听器名称作用cloudBootstrapApplicationListenercloudLoggingSystemShutdownListenercloudRestartListenercloudLoggingSystemShutdownListenerspringbootEnvironmentPostProcessorApplicationListener用于触发在spring.factories文件中注册的Environm…

osg操控器之动画路径操控器osgGA::AnimationPathManipulator分析

目录 1. 前言 2. 示例代码 3. 动画路径操控器源码分析 3.1. 构造函数 3.2. home函数 3.3. handle函数 3.3.1 帧事件处理 3.3.2. 按键事件处理 4. 主要接口说明 1. 前言 osg官方提供了很多操控器&#xff0c;在源码目录下的src\osgGA目录下&#xff0c;cpp文件名含有Ma…

初识AUTOSAR

目录 应用层 Runnable Port 运行时环境 基础软件层 总结 AUTOSAR&#xff0c;全称为Automotive Open System Architecture&#xff0c;即汽车开放系统架构。它最初于2003年由当时全球各家顶级汽车制造商&#xff08;奔驰、宝马、大众等&#xff09;、零部件供应商&#x…

【Unity入门】21.预制体

【Unity入门】预制体 大家好&#xff0c;我是Lampard~~ 欢迎来到Unity入门系列博客&#xff0c;所学知识来自B站阿发老师~感谢 &#xff08;一&#xff09;预制体制作 &#xff08;1&#xff09;什么是预制体 这一章节的博客&#xff0c;我们将会学习一个预制体的概念。什么是…

【C语言进阶】-- 重点字符串函数内存函数及其模拟实现(strlen,strcmp,strcat...memcpy,memmove)

目录 1、strlen 1.1 strlen的模拟实现 2、strcpy 2.1 strcpy的模拟实现 3、strcat 3.1 strcat的模拟实现 4、strcmp 4.1 strcmp的模拟实现 5、strstr 5.1 strstr的模拟实现 6、memcpy 6.1 memcpy的模拟实现 7、memmove 7.1 memmove的模拟实现 前言 C语言中对字符…

Ant Design Vue,a-table组件加序号

<a-table:columns"columns":pagination"pagination":data-source"dataSource":defaultExpandAllRows"true"change"tableChange":rowKey"(record, index) > index 1"> columns是表格列的配置&#xff0c…

【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

【2023五一杯数学建模】 B题 快递需求分析问题 1 题目 请依据以下提供的附件数据和背景内容&#xff0c;建立数学模型&#xff0c;完成接下来的问题&#xff1a;问题背景是&#xff0c;网络购物作为一种重要的消费方式&#xff0c;带动着快递服务需求飞速增长&#xff0c;为我…