Helsinki-NLP/opus-mt-zh-en · Hugging FaceWe’re on a journey to advance and democratize artificial intelligence through open source and open science.https://huggingface.co/Helsinki-NLP/opus-mt-zh-en?text=%E6%88%91%E5%8F%AB%E6%B2%83%E5%B0%94%E5%A4%AB%E5%86%88%EF%BC%8C%E6%88%91%E4%BD%8F%E5%9C%A8%E6%9F%8F%E6%9E%97%E3%80%82NLP(四十一)使用HuggingFace翻译模型的一次尝试_huggingface 翻译_山阴少年的博客-CSDN博客 本文将如何如何使用HuggingFace中的翻译模型。 HuggingFace是NLP领域中响当当的团体,它在预训练模型方面作出了很多接触的工作,并开源了许多预训练模型和已经针对具体某个NLP人物训练好的直接可以使用的模型。本文将使用HuggingFace提供的可直接使用的翻译模型。 HuggingFace的翻译模型可参考网址:https://huggingface.co/models?pipeline_tag=translation ,该部分模型中的绝大部分是由Helsinki-NLP(Lanhttps://blog.csdn.net/jclian91/article/details/114647084
# -*- coding: utf-8 -*-
import sys
sys.path.append("/home/sniss/local_disk/stable_diffusion_api/")
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("/home/sniss/local_disk/stable_diffusion_api/models/opus-mt-zh-en")
model = AutoModelForSeq2SeqLM.from_pretrained("/home/sniss/local_disk/stable_diffusion_api/models/opus-mt-zh-en")
def translation_zh_en(text):
# Tokenize the text
batch = tokenizer.prepare_seq2seq_batch(src_texts=[text], return_tensors='pt', max_length=512)
# batch = tokenizer.prepare_seq2seq_batch(src_texts=[text])
# Make sure that the tokenized text does not exceed the maximum
# allowed size of 512
# import pdb;pdb.set_trace()
# batch["input_ids"] = batch["input_ids"][:, :512]
# batch["attention_mask"] = batch["attention_mask"][:, :512]
# Perform the translation and decode the output
translation = model.generate(**batch)
result = tokenizer.batch_decode(translation, skip_special_tokens=True)
return result
if __name__ == "__main__":
text = "从时间上看,中国空间站的建造比国际空间站晚20多年。"
result = translation_zh_en(text)
print(result)