OSI七层模型与TCP/IP四层模型
首先简单说一下OSI参考模型,OSI将网络分为七层,自下而上分别是物理层、数据链路层、网络层、传输层、会话层、表示层、应用层,而TCP/IP体系结构则将网络分为四层,自下而上分别是网络接口层、网络层、传输层、应用层。
看下面的图,发送端想要发送数据到接收端。首先应用层准备好要发送的数据,然后给了传输层,传输层的主要作用就是为发送端和接收端提供可靠的连接服务,传输层将数据处理完后就给了网络层。网络层的功能就是管理网络,其中一个核心的功能就是路径的选择(路由),从发送端到接收端有很多条路,网络层就负责管理下一步数据应该到哪个路由器。选择好了路径之后,数据就来到了数据链路层,这一层就是负责将数据从一个路由器送到另一个路由器。然后就是物理层了,可以简单的理解,物理层就是网线一类的最基础的设备。
TCP/IP提供点对点的链接机制,将数据应该如何封装、定址、传输、路由以及在目的地如何接收,都加以标准化。它将软件通信过程抽象化为四个抽象层,采取协议堆栈的方式,分别实现出不同通信协议。协议族下的各种协议,依其功能不同,被分别归属到这四个层次结构之中,常被视为是简化的七层OSI模型。
TCP/IP 协议族
目前实际使用的网络模型是 TCP/IP 模型,它对 OSI 模型进行了简化,只包含了四层,从上到下分别是应用层、传输层、网络层和链路层(网络接口层),每一层都包含了若干协议。
协议(Protocol)就是网络通信过程中的约定或者合同,通信的双方必须都遵守才能正常收发数据。协议有很多种,例如 TCP、UDP、IP 等,通信的双方必须使用同一协议才能通信。协议是一种规范,由计算机组织制定,规定了很多细节,例如,如何建立连接,如何相互识别等。
协议仅仅是一种规范,必须由计算机软件来实现。例如 IP 协议规定了如何找到目标计算机,那么各个开发商在开发自己的软件时就必须遵守该协议,不能另起炉灶。
TCP/IP 模型包含了 TCP、IP、UDP、Telnet、FTP、SMTP 等上百个互为关联的协议,其中 TCP 和 IP 是最常用的两种底层协议,所以把它们统称为“TCP/IP 协议族”。
也就是说,“TCP/IP模型”中所涉及到的协议称为“TCP/IP协议族”,你可以区分这两个概念,也可以认为它们是等价的,随便你怎么想。
TCP
百度百科定义:**传输控制协议(TCP,Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通信协议。**数据在传输前要建立连接,传输完毕后还要断开连接,客户端在收发数据前要使用 connect() 函数和服务器建立连接。建立连接的目的是保证IP地址、端口、物理链路等正确无误,为数据的传输开辟通道。
TCP建立连接时要传输三个数据包,俗称三次握手(Three-way Handshaking)。
TCP数据报结构及三次握手
http://c.biancheng.net/view/2351.html
客户端在收发数据前要使用 connect() 函数和服务器建立连接。建立连接的目的是保证IP地址、端口、物理链路等正确无误,为数据的传输开辟通道。
TCP建立连接时要传输三个数据包,俗称三次握手(Three-way Handshaking)。可以形象的比喻为下面的对话:
[Shake 1] 套接字A:“你好,套接字B,我这里有数据要传送给你,建立连接吧。”
[Shake 2] 套接字B:“好的,我这边已准备就绪。”
[Shake 3] 套接字A:“谢谢你受理我的请求。”
TCP数据报结构
我们先来看一下TCP数据报的结构:
带阴影的几个字段需要重点说明一下:
-
序号:Seq(Sequence Number)序号占32位,用来标识从计算机A发送到计算机B的数据包的序号,计算机发送数据时对此进行标记。
-
确认号:Ack(Acknowledge Number)确认号占32位,客户端和服务器端都可以发送,Ack = Seq + 1。
-
标志位:每个标志位占用1Bit,共有6个,分别为 URG、ACK、PSH、RST、SYN、FIN,具体含义如下:
URG:紧急指针(urgent pointer)有效。
ACK:确认序号有效。
PSH:接收方应该尽快将这个报文交给应用层。
RST:重置连接。
SYN:建立一个新连接。
FIN:断开一个连接。
对英文字母缩写的总结:Seq 是 Sequence 的缩写,表示序列;Ack(ACK) 是 Acknowledge 的缩写,表示确认;SYN 是 Synchronous 的缩写,愿意是“同步的”,这里表示建立同步连接;FIN 是 Finish 的缩写,表示完成。
连接的建立(三次握手)
使用 connect() 建立连接时,客户端和服务器端会相互发送三个数据包,请看下图:
客户端调用 socket() 函数创建套接字后,因为没有建立连接,所以套接字处于CLOSED状态;服务器端调用 listen() 函数后,套接字进入LISTEN状态,开始监听客户端请求。
这个时候,客户端开始发起请求:
-
当客户端调用 connect() 函数后,TCP协议会组建一个数据包,并设置 SYN 标志位,表示该数据包是用来建立同步连接的。同时生成一个随机数字 1000,填充“序号(Seq)”字段,表示该数据包的序号。完成这些工作,开始向服务器端发送数据包,客户端就进入了SYN-SEND状态。
-
服务器端收到数据包,检测到已经设置了 SYN 标志位,就知道这是客户端发来的建立连接的“请求包”。服务器端也会组建一个数据包,并设置 SYN 和 ACK 标志位,SYN 表示该数据包用来建立连接,ACK 用来确认收到了刚才客户端发送的数据包。
服务器生成一个随机数 2000,填充“序号(Seq)”字段。2000 和客户端数据包没有关系。
服务器将客户端数据包序号(1000)加1,得到1001,并用这个数字填充“确认号(Ack)”字段。
服务器将数据包发出,进入SYN-RECV状态。
- 客户端收到数据包,检测到已经设置了 SYN 和 ACK 标志位,就知道这是服务器发来的“确认包”。客户端会检测“确认号(Ack)”字段,看它的值是否为 1000+1,如果是就说明连接建立成功。
接下来,客户端会继续组建数据包,并设置 ACK 标志位,表示客户端正确接收了服务器发来的“确认包”。同时,将刚才服务器发来的数据包序号(2000)加1,得到 2001,并用这个数字来填充“确认号(Ack)”字段。
客户端将数据包发出,进入ESTABLISED状态,表示连接已经成功建立。
- 服务器端收到数据包,检测到已经设置了 ACK 标志位,就知道这是客户端发来的“确认包”。服务器会检测“确认号(Ack)”字段,看它的值是否为 2000+1,如果是就说明连接建立成功,服务器进入ESTABLISED状态。
至此,客户端和服务器都进入了ESTABLISED状态,连接建立成功,接下来就可以收发数据了。
最后的说明
三次握手的关键是要确认对方收到了自己的数据包,这个目标就是通过“确认号(Ack)”字段实现的。计算机会记录下自己发送的数据包序号 Seq,待收到对方的数据包后,检测“确认号(Ack)”字段,看Ack = Seq + 1是否成立,如果成立说明对方正确收到了自己的数据包。
TCP数据的传输过程
上图给出了主机A分2次(分2个数据包)向主机B传递200字节的过程。首先,主机A通过1个数据包发送100个字节的数据,数据包的 Seq 号设置为 1200。主机B为了确认这一点,向主机A发送 ACK 包,并将 Ack 号设置为 1301。
为了保证数据准确到达,目标机器在收到数据包(包括SYN包、FIN包、普通数据包等)包后必须立即回传ACK包,这样发送方才能确认数据传输成功。
此时 Ack 号为 1301 而不是 1201,原因在于 Ack 号的增量为传输的数据字节数。假设每次 Ack 号不加传输的字节数,这样虽然可以确认数据包的传输,但无法明确100字节全部正确传递还是丢失了一部分,比如只传递了80字节。因此按如下的公式确认 Ack 号:
Ack号 = Seq号 + 传递的字节数 + 1
与三次握手协议相同,最后加 1 是为了告诉对方要传递的 Seq 号。
下面分析传输过程中数据包丢失的情况,如下图所示:
上图表示通过 Seq 1301 数据包向主机B传递100字节的数据,但中间发生了错误,主机B未收到。经过一段时间后,主机A仍未收到对于 Seq 1301 的ACK确认,因此尝试重传数据。
为了完成数据包的重传,TCP套接字每次发送数据包时都会启动定时器,如果在一定时间内没有收到目标机器传回的 ACK 包,那么定时器超时,数据包会重传。
上图演示的是数据包丢失的情况,也会有 ACK 包丢失的情况,一样会重传。
重传超时时间(RTO, Retransmission Time Out)
这个值太大了会导致不必要的等待,太小会导致不必要的重传,理论上最好是网络 RTT 时间,但又受制于网络距离与瞬态时延变化,所以实际上使用自适应的动态算法(例如 Jacobson 算法和 Karn 算法等)来确定超时时间。
往返时间(RTT,Round-Trip Time)表示从发送端发送数据开始,到发送端收到来自接收端的 ACK 确认包(接收端收到数据后便立即确认),总共经历的时延。
重传次数
TCP数据包重传次数根据系统设置的不同而有所区别。有些系统,一个数据包只会被重传3次,如果重传3次后还未收到该数据包的 ACK 确认,就不再尝试重传。但有些要求很高的业务系统,会不断地重传丢失的数据包,以尽最大可能保证业务数据的正常交互。
最后需要说明的是,发送端只有在收到对方的 ACK 确认包后,才会清空输出缓冲区中的数据。
TCP四次握手断开连接
建立连接非常重要,它是数据正确传输的前提;断开连接同样重要,它让计算机释放不再使用的资源。如果连接不能正常断开,不仅会造成数据传输错误,还会导致套接字不能关闭,持续占用资源,如果并发量高,服务器压力堪忧。
建立连接需要三次握手,断开连接需要四次握手,可以形象的比喻为下面的对话:
[Shake 1] 套接字A:“任务处理完毕,我希望断开连接。”
[Shake 2] 套接字B:“哦,是吗?请稍等,我准备一下。”
等待片刻后……
[Shake 3] 套接字B:“我准备好了,可以断开连接了。”
[Shake 4] 套接字A:“好的,谢谢合作。”
下图演示了客户端主动断开连接的场景:
建立连接后,客户端和服务器都处于ESTABLISED状态。这时,客户端发起断开连接的请求:
-
客户端调用 close() 函数后,向服务器发送 FIN 数据包,进入FIN_WAIT_1状态。FIN 是 Finish 的缩写,表示完成任务需要断开连接。
-
服务器收到数据包后,检测到设置了 FIN 标志位,知道要断开连接,于是向客户端发送“确认包”,进入CLOSE_WAIT状态。
注意:服务器收到请求后并不是立即断开连接,而是先向客户端发送“确认包”,告诉它我知道了,我需要准备一下才能断开连接。
-
客户端收到“确认包”后进入FIN_WAIT_2状态,等待服务器准备完毕后再次发送数据包。
-
等待片刻后,服务器准备完毕,可以断开连接,于是再主动向客户端发送 FIN 包,告诉它我准备好了,断开连接吧。然后进入LAST_ACK状态。
-
客户端收到服务器的 FIN 包后,再向服务器发送 ACK 包,告诉它你断开连接吧。然后进入TIME_WAIT状态。
-
服务器收到客户端的 ACK 包后,就断开连接,关闭套接字,进入CLOSED状态。
关于 TIME_WAIT 状态的说明
客户端最后一次发送 ACK包后进入 TIME_WAIT 状态,而不是直接进入 CLOSED 状态关闭连接,这是为什么呢?
TCP 是面向连接的传输方式,必须保证数据能够正确到达目标机器,不能丢失或出错,而网络是不稳定的,随时可能会毁坏数据,所以机器A每次向机器B发送数据包后,都要求机器B”确认“,回传ACK包,告诉机器A我收到了,这样机器A才能知道数据传送成功了。如果机器B没有回传ACK包,机器A会重新发送,直到机器B回传ACK包。
客户端最后一次向服务器回传ACK包时,有可能会因为网络问题导致服务器收不到,服务器会再次发送 FIN 包,如果这时客户端完全关闭了连接,那么服务器无论如何也收不到ACK包了,所以客户端需要等待片刻、确认对方收到ACK包后才能进入CLOSED状态。那么,要等待多久呢?
数据包在网络中是有生存时间的,超过这个时间还未到达目标主机就会被丢弃,并通知源主机。这称为报文最大生存时间(MSL,Maximum Segment Lifetime)。TIME_WAIT 要等待 2MSL 才会进入 CLOSED 状态。ACK 包到达服务器需要 MSL 时间,服务器重传 FIN 包也需要 MSL 时间,2MSL 是数据包往返的最大时间,如果 2MSL 后还未收到服务器重传的 FIN 包,就说明服务器已经收到了 ACK 包。
TCP协议的粘包问题
TCP 协议粘包问题是因为应用层协议开发者的错误设计导致的,他们忽略了 TCP 协议数据传输的核心机制 — 基于字节流,其本身不包含消息、数据包等概念,所有数据的传输都是流式的,需要应用层协议自己设计消息的边界,即消息帧(Message Framing)
举个例子,A 与 B 进行 TCP 通信,A 先后给 B 发送了一个 100 字节和 200 字节的数据包,那么 B 是如何收到呢?B 可能先收到 100 字节,再收到 200 字节;也可能先收到 50 字节,再收到 250 字节;或者先收到 100 字节,再收到 100 字节,再收到 100 字节
解决粘包问题
- 固定包长的数据包
- 以指定字符(串)为包的结尾
- 包头+包体 格式
如下为包头+包体方法的基本流程图:
网络传输中的大小端问题
CPU 向内存保存数据的方式有两种:
大端序(Big Endian):高位字节存放到低位地址(高位字节在前)
小端序(Little Endian):高位字节存放到高位地址(低位字节在前)
为什么会有大小端模式之分:
“因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于 8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式”
假设现在要在使用不同字节顺序的机器之间传输和交换数据,那该怎么办呢?(同样的数据,不同的机器可能有不同的理解,岂不是有悖初衷!)有两种方法,一种是全部转换成文本来传输,另一种是双方都按照某一方的字节顺序来传输(这时就有一个不同字节顺序之间的相互转换问题)。
IP、MAC和端口号——网络通信中确认身份信息的三要素
IP
IP地址是 Internet Protocol Address 的缩写,译为“网际协议地址”。
目前大部分软件使用 IPv4 地址,但 IPv6 也正在被人们接受,尤其是在教育网中,已经大量使用。
一台计算机可以拥有一个独立的 IP 地址,一个局域网也可以拥有一个独立的 IP 地址(对外就好像只有一台计算机)。对于目前广泛使用 IPv4 地址,它的资源是非常有限的,一台计算机一个 IP 地址是不现实的,往往是一个局域网才拥有一个 IP 地址。
在因特网上进行通信时,必须要知道对方的 IP 地址。实际上数据包中已经附带了 IP 地址,把数据包发送给路由器以后,路由器会根据 IP 地址找到对方的地里位置,完成一次数据的传递。路由器有非常高效和智能的算法,很快就会找到目标计算机。
特殊的IP
- 大家需要记住127.0.0.1,它是一个特殊IP地址,表示本机地址
- 严格说来,0.0.0.0已经不是一个真正意义上的IP地址了。它表示的是这样一个集合:所有不清楚的主机和目的网络。这里的“不清楚”是指在本机的路由表里没有特定条目指明如何到达。对本机来说,它就是一个“收容所”,所有不认识的“三无”人员,一律送进去。如果你在网络设置中设置了缺省网关,那么Windows系统会自动产生一个目的地址为0.0.0.0的缺省路由。
- 255.255.255.255 限制广播地址。对本机来说,这个地址指本网段内(同一广播域)的所有主机。如果翻译成人类的语言,应该是这样:“这个房间里的所有人都注意了!”这个地址不能被路由器转发
- 224.0.0.1 组播地址,注意它和广播的区别。从224.0.0.0到239.255.255.255都是这样的地址。224.0.0.1特指所有主机,224.0.0.2特指所有路由器。这样的地址多用于一些特定的程序以及多媒体程序。如果你的主机开启了IRDP(Internet路由发现协议,使用组播功能)功能,那么你的主机路由表中应该有这样一条路由。
- 169.254.X.X 如果你的主机使用了DHCP功能自动获得一个IP地址,那么当你的DHCP服务器发生故障,或响应时间太长而超出了一个系统规定的时间,Wingdows系统会为你分配这样一个地址。如果你发现你的主机IP地址是一个诸如此类的地址,很不幸,十有八九是你的网络不能正常运行了
- 10.X.X.X、172.16.X.X~172.31.X.X、192.168.X.X 私有地址,这些地址被大量用于企业内部网络中。一些宽带路由器,也往往使用192.168.1.1作为缺省地址。私有网络由于不与外部互连,因而可能使用随意的IP地址。保留这样的地址供其使用是为了避免以后接入公网时引起地址混乱。使用私有地址的私有网络在接入Internet时,要使用地址翻译(NAT),将私有地址翻译成公用合法地址。在Internet上,这类地址是不能出现的。对一台网络上的主机来说,它可以正常接收的合法目的网络地址有三种:本机的IP地址、广播地址以及组播地址
MAC
现实的情况是,一个局域网往往才能拥有一个独立的 IP;换句话说,IP 地址只能定位到一个局域网,无法定位到具体的一台计算机。这可怎么办呀?这样也没法通信啊。
其实,真正能唯一标识一台计算机的是 MAC 地址,每个网卡的 MAC 地址在全世界都是独一无二的。计算机出厂时,MAC 地址已经被写死到网卡里面了(当然通过某些“奇巧淫技”也是可以修改的)。局域网中的路由器/交换机会记录每台计算机的 MAC 地址。
MAC 地址是 Media Access Control Address 的缩写,直译为“媒体访问控制地址”,也称为局域网地址(LAN Address),以太网地址(Ethernet Address)或物理地址(Physical Address)。
数据包中除了会附带对方的 IP 地址,还会附带对方的 MAC 地址,当数据包达到局域网以后,路由器/交换机会根据数据包中的 MAC 地址找到对应的计算机,然后把数据包转交给它,这样就完成了数据的传递。
端口号
有了 IP 地址和 MAC 地址,虽然可以找到目标计算机,但仍然不能进行通信。一台计算机可以同时提供多种网络服务,例如 Web 服务(网站)、FTP 服务(文件传输服务)、SMTP 服务(邮箱服务)等,仅有 IP 地址和 MAC 地址,计算机虽然可以正确接收到数据包,但是却不知道要将数据包交给哪个网络程序来处理,所以通信失败。
为了区分不同的网络程序,计算机会为每个网络程序分配一个独一无二的端口号(Port Number),例如,Web 服务的端口号是 80,FTP 服务的端口号是 21,SMTP 服务的端口号是 25。
端口(Port)是一个虚拟的、逻辑上的概念。可以将端口理解为一道门,数据通过这道门流入流出,每道门有不同的编号,就是端口号。如下图所示: