跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测)

news2025/1/11 10:07:20

跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测)

目录

跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测)

1. 前言

2. 跌倒检测数据集说明

3. 基于YOLOv5的跌倒检测模型训练

4.跌倒检测模型Android部署

(1) 将Pytorch模型转换ONNX模型

(2) 将ONNX模型转换为TNN模型

(3) Android端上部署模型

(4) 一些异常错误解决方法

5. Android跌倒检测效果

6.项目源码下载


1. 前言

这是项目《跌倒检测和识别》系列之《Android实现跌倒检测(含源码,可实时跌倒检测)》;本篇主要分享将Python训练后的YOLOv5的跌倒检测模型移植到Android平台。我们将开发一个简易的、可实时运行的跌倒检测Android Demo,可实现检测人体的up(站立),bending(弯腰,蹲下)和down(躺下,摔倒)三种状态。

考虑到原始YOLOv5的模型计算量比较大,鄙人在YOLOv5s基础上,开发了一个非常轻量级的的跌倒(摔倒)检测模型yolov5s05_320。从效果来看,Android跌倒(摔倒)检测模型的检测效果还是可以的,高精度版本YOLOv5s平均精度平均值mAP_0.5:0.95=0.73693,而轻量化版本yolov5s05_416平均精度平均值mAP_0.5:0.95=0.50567左右。APP在普通Android手机上可以达到实时的检测识别效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。

先展示一下Android Demo跌倒检测和识别的效果:

 6ffc996ba44a4ea18086fe19df0e2cc1.gif     b5554c83e93844d285e551fdfea365f5.gif

【Android APP体验】https://download.csdn.net/download/guyuealian/87707747

【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/130250824


 更多项目《跌倒检测和识别》系列文章请参考:

  1. 跌倒检测和识别1:跌倒检测数据集(含下载链接):https://blog.csdn.net/guyuealian/article/details/130184256
  2. 跌倒检测和识别2:YOLOv5实现跌倒检测(含跌倒检测数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/130250738
  3. 跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测):https://blog.csdn.net/guyuealian/article/details/130250824

  4. 跌倒检测和识别4:C++实现跌倒检测(含源码,可实时跌倒检测):https://blog.csdn.net/guyuealian/article/details/130250838

f390c8a31a7a443f9b6cde5959cbf83b.gif


2. 跌倒检测数据集说明

 目前收集了约4000的跌倒检测数据集和26000+跌倒分类数据集,关于跌倒检测数据集说明,请参考:跌倒检测和识别1:跌倒检测数据集(含下载链接)


3. 基于YOLOv5的跌倒检测模型训练

官方YOLOv5给出了YOLOv5l,YOLOv5m,YOLOv5s等模型。考虑到手机端CPU/GPU性能比较弱鸡,直接部署yolov5s运行速度十分慢。所以本人在yolov5s基础上进行模型轻量化处理,即将yolov5s的模型的channels通道数全部都减少一半,并且模型输入由原来的640×640降低到416×416或者320×320,该轻量化的模型我称之为yolov5s05。轻量化后的模型yolov5s05比yolov5s计算量减少了16倍,参数量减少了7倍。

下面是yolov5s05和yolov5s的参数量和计算量对比:

模型input-sizeparams(M)GFLOPs
yolov5s640×6407.216.5
yolov5s05416×4161.71.8
yolov5s05320×3201.71.1

yolov5s05和yolov5s训练过程完全一直,仅仅是配置文件不一样而已;碍于篇幅,本篇博客不在赘述,详细训练过程请参考: 《跌倒检测和识别2:YOLOv5实现跌倒检测(含跌倒检测数据集和训练代码) :https://blog.csdn.net/guyuealian/article/details/130250738


4.跌倒检测模型Android部署

(1) 将Pytorch模型转换ONNX模型

训练好yolov5s05或者yolov5s模型后,你需要将模型转换为ONNX模型,并使用onnx-simplifier简化网络结构

# 转换yolov5s05模型
python export.py --weights "data/model/yolov5s05_320/weights/best.pt" --img-size 320 320
# 转换yolov5s模型
python export.py --weights "data/model/yolov5s_640/weights/best.pt" --img-size 640 640

GitHub: https://github.com/daquexian/onnx-simplifier
Install:  pip3 install onnx-simplifier 

(2) 将ONNX模型转换为TNN模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行Android端上部署:

TNN转换工具:

  • (1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub
  • (2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine   (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)

​​

(3) Android端上部署模型

项目实现了Android版本的跌倒(摔倒)检测Demo,部署框架采用TNN,支持多线程CPU和GPU加速推理,在普通手机上可以实时处理。Android源码核心算法YOLOv5部分均采用C++实现,上层通过JNI接口调用

package com.cv.tnn.model;

import android.graphics.Bitmap;

public class Detector {

    static {
        System.loadLibrary("tnn_wrapper");
    }


    /***
     * 初始化模型
     * @param model: TNN *.tnnmodel文件文件名(含后缀名)
     * @param root:模型文件的根目录,放在assets文件夹下
     * @param model_type:模型类型
     * @param num_thread:开启线程数
     * @param useGPU:关键点的置信度,小于值的坐标会置-1
     */
    public static native void init(String model, String root, int model_type, int num_thread, boolean useGPU);

    /***
     * 检测
     * @param bitmap 图像(bitmap),ARGB_8888格式
     * @param score_thresh:置信度阈值
     * @param iou_thresh:  IOU阈值
     * @return
     */
    public static native FrameInfo[] detect(Bitmap bitmap, float score_thresh, float iou_thresh);
}

如果你想在这个Android Demo部署你自己训练的YOLOv5模型,你可将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把TNN模型代替你模型即可。

(4) 一些异常错误解决方法

  • TNN推理时出现:Permute param got wrong size

官方YOLOv5:  GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite 

如果你是直接使用官方YOLOv5代码转换TNN模型,部署TNN时会出现这个错误Permute param got wrong size,这是因为TNN最多支持4个维度计算,而YOLOv5在输出时采用了5个维度。你需要修改model/yolo.py文件 

​​

 export.py文件设置model.model[-1].export = True:

.....
    # Exports
    if 'torchscript' in include:
        export_torchscript(model, img, file, optimize)
    if 'onnx' in include:
        model.model[-1].export = True  # TNN不支持5个维度,修改输出格式
        export_onnx(model, img, file, opset, train, dynamic, simplify=simplify)
    if 'coreml' in include:
        export_coreml(model, img, file)

    # Finish
    print(f'\nExport complete ({time.time() - t:.2f}s)'
          f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
          f'\nVisualize with https://netron.app')

.....
  • TNN推理时效果很差,检测框一团麻

​​

 这个问题,大部分是模型参数设置错误,需要根据自己的模型,修改C++推理代码YOLOv5Param模型参数。


struct YOLOv5Param {
    ModelType model_type;                  // 模型类型,MODEL_TYPE_TNN,MODEL_TYPE_NCNN等
    int input_width;                       // 模型输入宽度,单位:像素
    int input_height;                      // 模型输入高度,单位:像素
    bool use_rgb;                          // 是否使用RGB作为模型输入(PS:接口固定输入BGR,use_rgb=ture时,预处理将BGR转换为RGB)
    bool padding;
    int num_landmarks;                     // 关键点个数
    NetNodes InputNodes;                   // 输入节点名称
    NetNodes OutputNodes;                  // 输出节点名称
    vector<YOLOAnchor> anchors;
    vector<string> class_names;            // 类别集合
};

input_width和input_height是模型的输入大小;vector<YOLOAnchor> anchors需要对应上,注意Python版本的yolov5s的原始anchor是

anchors:
  - [ 10,13, 16,30, 33,23 ]  # P3/8
  - [ 30,61, 62,45, 59,119 ]  # P4/16
  - [ 116,90, 156,198, 373,326 ]  # P5/32

而yolov5s05由于input size由原来640变成320,anchor也需要做对应调整:

anchors:
  - [ 5, 6, 8, 15, 16, 12 ]  # P3/8
  - [ 15, 30, 31, 22, 30, 60 ]  # P4/16
  - [ 58, 45, 78, 99, 186, 163 ]  # P5/32

因此C++版本的yolov5s和yolov5s05的模型参数YOLOv5Param如下设置

//YOLOv5s模型参数
static YOLOv5Param YOLOv5s_640 = {MODEL_TYPE_TNN,
                                  640,
                                  640,
                                  true,
                                  true,
                                  0,
                                  {{{"images", nullptr}}}, //InputNodes
                                  {{{"boxes", nullptr},   //OutputNodes
                                    {"scores", nullptr}}},
                                  {
                                          {"434", 32, {{116, 90}, {156, 198}, {373, 326}}},
                                          {"415", 16, {{30, 61}, {62, 45}, {59, 119}}},
                                          {"output", 8, {{10, 13}, {16, 30}, {33, 23}}},
                                  },
                                  CLASS_NAME
};

//YOLOv5s05模型参数
static YOLOv5Param YOLOv5s05_ANCHOR_416 = {MODEL_TYPE_TNN,
                                           416,
                                           416,
                                           true,
                                           true,
                                           0,
                                           {{{"images", nullptr}}}, //InputNodes
                                           {{{"boxes", nullptr},   //OutputNodes
                                             {"scores", nullptr}}},
                                           {
                                                   {"434", 32,{{75, 58}, {101, 129}, {242, 212}}},
                                                   {"415", 16, {{20, 40}, {40, 29}, {38, 77}}},
                                                   {"output", 8, {{6, 8}, {10, 20}, {21, 15}}}, //
                                           },
                                           CLASS_NAME
};
//YOLOv5s05模型参数
static YOLOv5Param YOLOv5s05_ANCHOR_320 = {MODEL_TYPE_TNN,
                                           320,
                                           320,
                                           true,
                                           true,
                                           0,
                                           {{{"images", nullptr}}}, //InputNodes
                                           {{{"boxes", nullptr},   //OutputNodes
                                             {"scores", nullptr}}},
                                           {
                                                   {"434", 32, {{58, 45}, {78, 99}, {186, 163}}},
                                                   {"415", 16, {{15, 30}, {31, 22}, {30, 60}}},
                                                   {"output", 8, {{5, 6}, {8, 15}, {16, 12}}}, //
                                           },
                                           CLASS_NAME
};
  • 运行APP闪退:dlopen failed: library "libomp.so" not found

参考解决方法:解决dlopen failed: library “libomp.so“ not found_PKing666666的博客-CSDN博客_dlopen failed


5. Android跌倒检测效果

 【Android APP体验】https://download.csdn.net/download/guyuealian/87441942

APP在普通Android手机上可以达到实时的跌倒(摔倒)检测效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。

  6ffc996ba44a4ea18086fe19df0e2cc1.gif     b5554c83e93844d285e551fdfea365f5.gif


6.项目源码下载

【Android APP体验】:https://download.csdn.net/download/guyuealian/87707747

 【项目源码下载】 跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测)

整套Android项目源码内容包含:

  1. 提供快速版yolov5s05_416和yolov5s05_320跌倒(摔倒)检测模型,在普通手机可实时检测识别,CPU(4线程)约30ms左右,GPU约25ms左右
  2. 提供高精度版本yolov5s跌倒(摔倒)检测模型,CPU(4线程)约250ms左右,GPU约100ms左右
  3. Demo支持图片,视频,摄像头测试
  4. 所有依赖库都已经配置好,可直接build运行,若运行出现闪退,请参考dlopen failed: library “libomp.so“ not found 解决。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/453203.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Kubernetes----Pod,资源对象文件

kubectl容器管理 kubectl用于控制Kubernetes集群的命令行工具 语法格式 kubectl [command] [type] [name] [flages] command: 子命令&#xff0c;如create&#xff0c;get,describe,delete type: 资源类型&#xff0c;可以表示为单数&#xff0c;复数形式或缩写形式 name: 资…

2023年4月份上新的图像领域分割模型设计系列论文(一)

来源&#xff1a;投稿 作者&#xff1a;王老师 编辑&#xff1a;学姐 论文1 论文标题&#xff1a; Learning Semantic-Aware Knowledge Guidance for Low-Light Image Enhancement 论文链接&#xff1a; https://arxiv.org/pdf/2304.07039v1.pdf代码链接&#xff1a; https://…

Java性能优化之序列化优化

1、Java 序列化及其缺陷 Java 提供了一种序列化机制&#xff0c;这种机制能够将一个对象序列化为二进制形式&#xff08;字节数组&#xff09;&#xff0c;用于写入磁盘或输出到网络&#xff0c;同时也能从网络或磁盘中读取字节数组&#xff0c;反序列化成对象&#xff0c;在程…

无法启动此程序,因为计算机中丢失VCRUNTIME140.dll”错误的解决办法

vcruntime140.dll是什么什么文件呢&#xff1f;为什么电脑在运行一些游戏或许软件的时候会出现丢失vcruntime140.dll&#xff0c;然后游戏或许软件运行失败?这个dll文件是电脑重要的运行库文件。丢失了会导致很多程序无法运行。 首先打开电脑浏览器以后在顶部网页栏目输入&am…

MATLAB实现图像滤波及噪声消除

图像增强是指根据特定的需要突出一幅图像中的某些信息&#xff0c;同时削弱或去除某些不需要的信息的处理方法。其主要目的是使处理后的图像对某种特定的应用来说&#xff0c;比原始图像更适用。因此&#xff0c;这类处理是为了某种应用目的而去改善图像质量的。处理的结果使图…

ROS学习第三十六节——Gazebo仿真环境搭建

https://download.csdn.net/download/qq_45685327/87719408 1.直接添加现成模型 1.1加入环境模型 在工程文件中创建worlds文件夹&#xff0c;并把之前下载的box_house.world文件放入 1.2编写launch文件 deamo03_car_world.launch <launch><!-- 将 Urdf 文件的内容…

CCGNet用于发现共晶材料中的coformer

共晶工程&#xff08;cocrystal engineering&#xff09;在制药&#xff0c;化学和材料领域有广泛应用。然而&#xff0c;如何有效选择coformer一直是一个挑战性课题。因此&#xff0c;作者开发了一个基于GNN的深度学习框架用于快速预测共晶的形成。为了从现有报告的6819个正样…

超详细Redis入门教程——Redis命令(下)

前言 本文小新为大家带来 超详细Redis入门教程——Redis命令 相关知识&#xff0c;具体内容包括简单动态字符串 SDS&#xff0c;集合的底层实现原理&#xff0c;BitMap 操作命令&#xff0c;HyperLogLog 操作命令&#xff0c;Geospatial 操作命令&#xff0c;发布/订阅命令&…

2023.04.23 学习周报

文章目录 摘要文献阅读1.题目2.摘要3.介绍4.模型4.1 研究区域4.2 自相关分析4.3 LSTM 5.实验与讨论5.1 高架道路不同位置空气污染物的变化5.2 高架道路不同位置空气污染物的相关性5.3 高架道路不同位置空气污染物预测 6.结论7.展望 度规张量1.曲率2.度量张量3.代码实现4.平行四…

基于遗传算法的梯级水电站群优化调度研究(Matlab代码实现)

&#x1f4a5; &#x1f4a5; &#x1f49e; &#x1f49e; 欢迎来到本博客 ❤️ ❤️ &#x1f4a5; &#x1f4a5; &#x1f3c6; 博主优势&#xff1a; &#x1f31e; &#x1f31e; &#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 …

王道计组(23版)7_I/O系统

I/O控制方式 数据传输率低的外设&#xff1a; 程序查询方式 程序中断方式&#xff1a;外设准备就绪则主动向CPU发送中断请求 数据传输率高的外设&#xff1a; DMA方式&#xff1a;主存和I/O设备有一条直接数据通路&#xff0c;无需调用中断 通道方式&#xff1a;每个通道挂接若…

CTFSHOW web入门——web30

代码审计 把flag、system、php都给过滤了 passthru()函数同system()函数类似&#xff0c;都可以用来执行外部命令的&#xff0c;因此可以用passthru来代替system。 因此构造payload&#xff1a;?cpassthru(cat f*); 查看页面源代码即可获得flag

ROS学习第三十四节——URDF与Gazebo基本集成流程

https://download.csdn.net/download/qq_45685327/87718593 1.创建功能包 创建新功能包&#xff0c;导入依赖包: urdf xacro gazebo_ros gazebo_ros_control gazebo_plugins 2.编写URDF文件 demo01_helloworld.urdf <robot name"mycar"><link name"…

Android 一个获取网址时间的Demo

Android 一个获取网址时间的Demo 文章目录 Android 一个获取网址时间的Demo通过一个网址获取时间的代码关于Android NTP 时间Android 同步时间代码 前段时间有个客户想用局域网同步Android 设备的时间&#xff0c;开发后把这个demo分享一下。 效果&#xff1a; 这里也获取了阿…

Xshell中的基本命令

whoami 当我们刚登录上Xshell的时候&#xff0c;我们应该做什么呢&#xff1f;&#xff1f; 我们上次说了如何增加使用者&#xff0c;和删除使用者&#xff0c;今天我们说一下其他的基本命令。 我们刚开始登录的时候可以用root登录 那么我们怎么看自己事谁呢&#xff1f; …

C/C++占位符,%x和%p的区别

遇到的问题 今天遇到了一个很奇怪的问题&#xff0c;当使用malloc分配了一个堆空间后&#xff0c;分别尝试用cout和printf尝试打印该地址&#xff0c;出现了两个地址不一样的情况&#xff1a; int *pp (int*)malloc(10*sizeof(int)); *pp 1234; cout << pp << …

35. 搜索插入位置 58. 最后一个单词的长度

目录 35. 搜索插入位置 思路 代码 58. 最后一个单词的长度 思路1 代码1 思路2 代码2 35. 搜索插入位置 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。…

存钱罐出口欧盟CE认证ROHS标准测试

近年来生活水平提高&#xff0c;人们手头上的余钱也多了起来&#xff0c;家长们通常会给小孩子买存钱罐&#xff0c;培养小孩子的理财能力&#xff0c;养成良好的财富观&#xff0c;一般的存钱罐都被设计用来存放硬币&#xff0c;一般分为陶瓷&#xff0c;塑料和金属。上端有缝…

电脑蓝屏怎么办?一招教你修好

很多用户遇到电脑蓝屏问题之后不懂怎么去进行解决&#xff1f;电脑蓝屏之后&#xff0c;我们只需要花一分钟制作一个启动盘&#xff0c;然后用这个启动盘来进行系统的重装就可以了。那么具体要怎么去操作呢&#xff1f;以下带来具体的操作方法教学。 准备工作&#xff1a; 1、U…

备忘录设计模式(Memento Pattern)[论点:概念、组成角色、示例代码、框架中的运用、适用场景]

文章目录 概念组成角色示例代码框架中的运用适用场景 概念 备忘录模式&#xff08;Memento Pattern&#xff09;是一种行为型设计模式&#xff0c;主要用于保存对象的内部状态&#xff0c;以便在需要时恢复到先前的状态。这种模式有助于实现撤销、恢复或回滚操作&#xff0c;同…