本地搭建属于自己的ChatGPT:基于PyTorch+ChatGLM-6b+Streamlit+QDrant+DuckDuckGo

news2024/11/23 8:13:51

在这里插入图片描述
在这里插入图片描述

本地部署chatglm及缓解时效性问题的思路:

模型使用chatglm-6b 4bit,推理使用hugging face,前端应用使用streamlit或者gradio。

微调对显存要求较高,还没试验。可以结合LoRA进行微调。

缓解时效性问题:通过本地数据库或者搜索引擎获取特有数据或者实时数据作为生成模型的上下文。

  • 向量数据库实现思路:先将特有数据转换为embedding存入向量数据库,在调用模型生成问答时,先将query转换成embedding,然后从数据库查询相近的结果作为上下文。embedding生成可以使用sentence_transformer库,向量数据库可以使用qdrant或者milvus。
  • 搜索引擎实现思路:在调用大模型生成问答时,先用搜索引擎搜索相关的词条,将词条内容或者摘要作为上下文输入到模型。搜索引擎可以使用duckduckgo_search库。

1.运行环境配置

windows 11

32G 内存

GTX 3080Ti

1.1 PyTorch

安装anaconda或者miniconda

创建虚拟环境:

conda create -n chatbot python=3.9

激活虚拟环境:

conda activate chatbot

主要依赖的包:

1)pytorch-gpu

Currently, PyTorch on Windows only supports Python 3.7-3.9; Python 2.x is not supported.

conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia

2)hugging face

conda install -c huggingface transformers

3)streamlit

pip install streamlit
pip install streamlit-chat

4)sentencepiece 和 cpm-kernels

pip install sentencepiece
pip install cpm-kernels

5)sentence-transformers

conda install -c conda-forge sentence-transformers

6)qdrant-client

pip install qdrant-client

7)duckduckgo_search

pip install -U duckduckgo_search

参考:

Start Locally | PyTorch

Installation (huggingface.co)

Installation - Streamlit Docs

Installation — Sentence-Transformers documentation (sbert.net)

Install - Qdrant

1.2 requirements

安装:

# 建议用这个
conda env create -f freeze.yml

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt

导出虚拟环境的依赖包命令:

conda env export > freeze.yml

pip list --format=freeze > ./requirements.txt

1.3 Docker

用于运行QDrant数据库:
在这里插入图片描述

可以参考:Install Docker Desktop on Windows | Docker Documentation

1.4 QDrant

可以参考:https://github.com/qdrant/qdrant

1.5 报错及处理

streamlit报错1

报错信息:

AttributeError: module 'click' has no attribute 'get_os_args'

解决措施:

pip install -U click==8

参考:https://github.com/streamlit/streamlit/issues/4555

streamlit报错2

报错信息:

AttributeError: module 'streamlit' has no attribute 'cache_resource'

解决措施:

# 去掉这个装饰器或者替换为
@st.cache

参考:https://discuss.streamlit.io/t/attributeerror-module-streamlit-has-no-attribute-cache/25155

2.大模型构建

2.1 开源模型

ChatGLM

从github下载chatglm-6b工程:THUDM/ChatGLM-6B

从抱抱脸下载chatglm-6b-int4模型:THUDM/chatglm-6b-int4

官方介绍:

ChatGLM-6B 是一个开源的、支持中英双语问答的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 ChatGLM 相同的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。

ChatGLM-6B-INT4 是 ChatGLM-6B 量化后的模型权重。具体的,ChatGLM-6B-INT4 对 ChatGLM-6B 中的 28 个 GLM Block 进行了 INT4 量化,没有对 Embedding 和 LM Head 进行量化。量化后的模型理论上 6G 显存(使用 CPU 即内存)即可推理,具有在嵌入式设备(如树莓派)上运行的可能。

在 CPU 上运行时,会根据硬件自动编译 CPU Kernel ,请确保已安装 GCC 和 OpenMP (Linux一般已安装,对于Windows则需手动安装),以获得最佳并行计算能力。

其他大模型

模型作者开源协议链接
BLOOMGoogleApache-2.0https://huggingface.co/bigscience/bloom
ColossoalAIApache-2.0https://colossalai.org/zh-Hans/
LLaMahttps://github.com/facebookresearch/llama
Alpacahttps://crfm.stanford.edu/2023/03/13/alpaca.html
T5https://huggingface.co/docs/transformers/model_doc/t5
CerebrasApache-2.0https://huggingface.co/cerebras/Cerebras-GPT-6.7B
文心一言
通义千问
盘古

2.2 微调

对显存要求较高,暂未试验。

制作微调数据集

可以参考:

huang1332/finetune_dataset_maker

基于LoRA/P-Tuning进行微调

可以参考:

极低资源微调大模型方法LoRA以及BLOOM-LORA实现代码

ChatGLM-6B/ptuning

mymusise/ChatGLM-Tuning

2.3 推理

Hugging Face

from transformers import AutoModel, AutoTokenizer

模型采样算法

ChatGPT有两个重要的参数是temperature和top_p,HuggingFace的AutoModel有两个类似的参数是temperature和top_k。上述这三个方法都是采样方法,用于因果语言模型中在给定上下文的情景下预测下一个单词出现的概率。

在进行预训练时,往往使用“完形填空”的形式,例如给定上文预测下文。基于贪心策略的思路是选择下文单词概率最大的单词,但是这样会让大模型的注意力只集中在最近的几个单词(token)上,导致最终模型生成效果会非常生硬和可预测。

为了让模型具有一定的创新性(随机性),可以使用基于分布采样的生成采样算法。

Top-k采样从排名前 k (即采样列表的大小为k)的token种进行抽样,允许其他分数或概率较高的token也有机会被选中。在很多情况下,这种抽样带来的随机性有助于提高生成质量

Top-k采样的缺点是k的取值不好确定,无法保证最优。所以ChatGPT引入了动态设置k大小的策略——即刻采样(Nucleus Sampling)。top-p 值通常设置为比较高的值(如0.75),目的是限制低概率token的长尾。可以同时使用top-k和top-p,top-p策略在top-k策略之后生效。

温度采样受统计热力学的启发,高温意味着更可能遇到低能态。在概率模型中,logits扮演着能量的角色,我们可以通过将logits除以温度来实现温度采样,然后将其输入Softmax并获得采样概率。

总的来说,温度参数用来调整候选词的概率分布。温度越低,模型对其首选越有信心;温度>1度会降低信心,模型不确定性增加,趋近于正无穷的温度相当于均匀采样(候选词的概率都相同,完全随机)。通常,温度设在[0.7, 0.9]之间是创造性任务最常见的温度。

参考:ChatGPT模型采样算法详解

3.前端应用

3.1 Streamlit

ChatGLM工程中提供了两个demo,基于streamlit的是其中之一,另一个是基于gradio的。

https://streamlit.io/

3.2 LangChain

LangChain是一个用于开发由语言模型驱动的应用程序的框架。它提供了一套工具、组件和接口,可简化创建由大型语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。LangChain 可以轻松管理与语言模型的交互,将多个组件链接在一起,并集成额外的资源,例如 API 和数据库。

https://docs.langchain.com/docs/

https://zhuanlan.zhihu.com/p/620529542

3.3 展示效果

在这里插入图片描述

4.时效性问题解决方案

核心思路:通过本地数据库或者搜索引擎获取特有数据或者实时数据作为生成模型的上下文。

向量数据库实现思路:先将特有数据转换为embedding存入向量数据库,在调用模型生成问答时,先将query转换成embedding,然后从数据库查询相近的结果作为上下文。

1)embedding生成可以使用sentence_transformer库

2)向量数据库可以使用qdrant或者milvus

搜索引擎实现思路:在调用大模型生成问答时,先用搜索引擎搜索相关的词条,将词条内容或者摘要作为上下文输入到模型。

1)搜索引擎库可以使用duckduckgo_search包

大模型使用chatglm-6b 4bit,推理使用hugging face,前端应用使用streamlit或者gradio。

4.1 embedding模型

模型介绍:Pretrained Models — Sentence-Transformers

在这里插入图片描述

模型下载:Models - Hugging Face

本项目中使用:multi-qa-MiniLM-L6-cos-v1

git clone https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1

4.2 向量数据库构建

def dataset2qdrant(root_path, file_path, embed_length: int = 384):
    client = QdrantClient("localhost", port=2023)
    collection_name = "data_collection"
    client.recreate_collection(
        collection_name=collection_name,
        vectors_config=VectorParams(size=embed_length, distance=Distance.COSINE)
    )

    count = 0
    file_dir = os.path.join(root_path, file_path)
    for root_path, dirs, files in os.walk(file_dir):
        for file in tqdm.tqdm(files):
            file_path = os.path.join(root_path, file)
            with open(file_path, "r", encoding="utf-8") as f:
                text = f.readlines()
                for per_line in text:
                    parts = per_line.split("##")
                    item = text2embedding(parts[1])
                    client.upsert(collection_name=collection_name,
                                  wait=True,
                                  points=[PointStruct(id=count, vector=list([float(x) for x in item.tolist()]),
                                                      payload={"title": parts[0], "response": parts[1]})]
                                  )
                    count += 1

参考:基于GPT3.5实现本地知识库解决方案-利用向量数据库和GPT向量接口-实现智能回复并限制ChatGPT回答的范围

4.3 搜索引擎构建

主要使用查询新闻的接口:

from typing import List

from duckduckgo_search import ddg_news


def get_news(keywords: str) -> List[dict]:
    return ddg_news(keywords, safesearch='Off', time='w', max_results=5)

4.4 增加上下文后的效果

增加上下文作为prompt一部分后的效果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.主要代码

5.1 功能介绍

import streamlit as st
from streamlit_chat import message

from inference import load_llm_model
from search_engine import get_news
from gen_embedding import text2embedding
from vector_database import result4search

MAX_TURNS = 20
MAX_BOXES = MAX_TURNS * 2

st.set_page_config(layout="wide")


def generate_answer(root_path, prompt, history):
    # 加载模型
    tokenizer, model = load_llm_model(root_path, "ChatGLM-6B\\chatglm-6b-int4")

    with container:
        if len(history) > 0:
            for i, (query, response) in enumerate(history):
                message(query, avatar_style="big-smile", key=str(i) + "_user")
                message(response, avatar_style="bottts", key=str(i))

        message(prompt, avatar_style="big-smile", key=str(len(history)) + "_user")
        st.write("AI正在回复:")
        with st.empty():
            for response, history in model.stream_chat(tokenizer,
                                                       prompt,
                                                       history,
                                                       max_length=max_length,
                                                       top_p=top_p,
                                                       temperature=temperature
                                                       ):
                query, response = history[-1]
                st.write(response)
        return history


def button_reset_event():
    st.session_state["state"] = []


if __name__ == "__main__":
    model_root_path = "D:\\GitHub\\LLM-Weights\\"

    container = st.container()
    # chatbot logo and title
    st.image("main_page_logo.png", width=64)
    st.title("A Chatbot powered by ChatGLM-6b")

    max_length = st.sidebar.slider(
        'max_length', 0, 4096, 2048, step=1
    )
    top_p = st.sidebar.slider(
        'top_p', 0.0, 1.0, 0.6, step=0.01
    )
    temperature = st.sidebar.slider(
        'temperature', 0.0, 1.0, 0.95, step=0.01
    )

    st.session_state["state"] = []

    # create a prompt text for the text generation
    prompt_text = st.text_area(label="用户命令输入",
                               height=100,
                               placeholder="请在这儿输入您的命令")

    # set button
    col1, col2 = st.columns([0.1, 0.9], gap="small")

    with col1:
        button_send = st.button("send", key="generate_answer")
    with col2:
        button_reset = st.button("reset", on_click=button_reset_event())

    if button_send:
        # news from web search engine
        search_news = get_news(prompt_text)
        if (search_news is not None) and len(search_news[0]) >= 1:
            relevant_news = get_news(prompt_text)[0]["body"]
        else:
            relevant_news = ""
        # knowledge from database
        database_answer = result4search(text2embedding(prompt_text))[0]
        if database_answer is not None:
            relevant_answer = database_answer["response"]
        else:
            relevant_answer = ""
        prompt_text = "问题:" + prompt_text + ",请参考以下内容生成答案:" + relevant_news + "。" + relevant_answer
        with st.spinner("AI正在思考,请稍等........"):
            st.session_state["state"] = generate_answer(model_root_path,
                                                        prompt_text,
                                                        st.session_state["state"])

5.2 代码下载

chopinchenx/Bubble: A private chatbot deployed on local. (github.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/450307.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

YOLOv7如何提高目标检测的速度和精度,基于模型结构提高目标检测速度

目录 一、目标检测二、目标检测的速度和精度的权衡1、速度和精度的概念和定义2、如何评估目标检测算法的速度和精度3、速度和精度之间的权衡 三、基于模型结构提高目标检测速度1、Backbone网络的选择2、特征金字塔网络的设计3、通道注意力机制4、混合精度训练 一、目标检测 目…

光纤网卡传输速率和它的应用领域有哪些呢?通常会用到哪些型号网络变压器呢?

Hqst盈盛(华强盛)电子导读:常有客户问起光纤网卡该如何选用到合适的产品,选用时要注意到哪些事项,这节将结合配合到的网络变压器和大家一起探讨,希望对大家有些帮助。 1.光纤网卡传输速率与网络…

【教程】一文读懂 ChatGPT API 接入指南

ChatGPT 是一个基于自然语言处理技术的 API,它能够根据用户的输入,生成智能回复。结合当前最先进的AI技术,AP智能续写&承接上下文;可以回答各种问题,例如:历史,科学,文化&#x…

【越早知道越好】的道理——能够提高效率的【快捷键】

文章目录 1️⃣虚拟桌面⚜️第一步:打开任务视图⚜️第二步:创建桌面⚜️第三步:桌面切换⚜️第四步:桌面删除 2️⃣窗口切换3️⃣桌面分屏⚜️如何分屏 前言🧑‍🎤:作为程序员👨‍&…

15天学习MySQL计划-多表联查(基础篇)第四天

15天学习MySQL计划(多表联查)第四天 1.多表查询 1.1概述 ​ 指从多张表中查询数据 ​ 在项目开发中,在进行数据库表结构设计时,会根据业务需求及业务模块之间的关系,分析并设计表结构,由于业务之间相互…

大数据实战 --- 美团外卖平台数据分析

目录 开发环境 数据描述 功能需求 数据准备 数据分析 RDD操作 Spark SQL操作 创建Hbase数据表 创建外部表 统计查询 开发环境 HadoopHiveSparkHBase 启动Hadoop:start-all.sh 启动zookeeper:zkServer.sh start 启动Hive: nohup …

人工智能会影响测试工程师吗

并不是危言耸听 当下最火的是什么,那非ChatGPT莫属了,以ChatGPT为代表的各类AIGC工具,在不断颠覆我们的认知,不仅能完成律师,医学考试;还能画出一张精美的设计图,拿下艺术大赛一等奖。 以之对…

C#基础学习--反射和特性

元数据和反射 要使用反射,必须使用System.Reflection 命名空间 Type类 Type是一个抽象类,用来包含类型的特性,使用这个类的对象可以让我们获取程序使用的类型的信息 我们可以从Type对象中获取需要了解的有关类型的几乎所有信息 获取Type对象…

Node.js下载安装及环境配置教程

一、进入官网地址下载安装包 https://nodejs.org/zh-cn/download/ 选择对应你系统的Node.js版本,这里我选择的是Windows系统、64位 Tips:如果想下载指定版本,点击【以往的版本】,即可选择自己想要的版本下载 二、安装程序 &…

在 VSCode 中让 TypeScript 错误更漂亮且易于阅读

简介 TypeScript 是一种流行的编程语言,为 JavaScript 提供了静态类型和改进的错误检测。然而,随着类型的复杂性增加,错误的复杂性也增加了。这就是 Pretty TypeScript Errors VSCode 插件的用途,它可以在 Visual Studio Code 中…

8.线性搜索算法和二进制搜索算法

算法:线性搜索算法 线性搜索是一种非常简单的搜索算法。在这种类型的搜索中,逐个对所有项目进行顺序搜索。检查每个项目,如果找到匹配项,则返回该特定项目,否则搜索将继续,直到数据收集结束。 算法 Linea…

【数据结构】- 链表之单链表(下)

文章目录 前言一、单链表(下)1.1 查找修改1.2 在任意位置插入1.2.1 在pos位置插入(也就是pos位置之前)1.2.2 在pos位置之后插入 1.3 在任意位置删除1.3.1 删除pos位置得值1.3.2 删除pos位置后面的值 二、完整代码总结 前言 未来藏在迷雾中 叫人看来胆怯 带你踏足其中 就会云开…

【C++类和对象】类和对象(中):拷贝构造函数 {拷贝构造函数的概念及特征,拷贝构造函数不能使用传值传参,编译器自动生成的拷贝构造函数}

四、拷贝构造函数 4.1 概念 在创建对象时,可否创建一个与已存在对象一某一样的新对象呢? 拷贝构造函数:只有单个形参,该形参是对本类类型对象的引用(一般常用const修饰),在用已存在的类类型对象创建新对象时由编译器…

MySQL高级(二)

一、SQL优化 (一)插入数据 批量插入 多次插入每一次insert都要与数据库建立连接。 INSERT INTO 表名 VALUES (),(),(); 一次插入数据不宜过多,不要超过1000条。 手动提交事务 START TRANSACTION; INSERT INTO 表名 VALUES (),(),(); I…

车载以太网 - SomeIP - 协议用例 - Format_01

目录 1、验证Client ID字段静态设置为0x0000 2、验证Session ID字段静态设置为0x0001 3、验证Protocol Version字段静态设置为0x01

SpringCloud:ElasticSearch之自动补全

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图: 这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。 因为需要根据拼音字母来推断,因此要用到拼音分词功能。 1.拼音分词器…

【移动端网页布局】移动端网页布局基础概念 ④ ( 物理像素 | 物理像素比 | 代码示例 - 100 像素在 PC浏览器 / 移动端浏览器 显示效果 )

文章目录 一、物理像素 / 物理像素比二、代码示例 - 100 像素在 PC浏览器 / 移动端浏览器 显示效果 一、物理像素 / 物理像素比 移动端 网页开发 与 PC 端开发有很多不同之处 , 在图片处理方向需要采用 二倍图 / 三倍图 / 多倍图 方式进行图片处理 ; 图片处理的方式与如下的 物…

项目支付接入支付宝【沙箱环境】

前言 订单支付接入支付宝,使用支付宝提供的沙箱机制模拟为订单付款。我这里主要记录一下沙箱环境如何接入到系统中,具体细节的实现。按照官方文档来就可以了。 1、使用步骤 这里有几个重要数据要拿到,一个是支付宝的公钥和私钥&#xff0c…

ClickHouse监控系统Prometheus+Grafana

目录 1 PrometheusGrafana概述2 安装Prometheus Grafana3 配置ClickHouse4 配置Grafana 1 PrometheusGrafana概述 ClickHouse 运行时会将一些个自身的运行状态记录到众多系统表中( system.*)。所以我们对于 CH 自身的一些运行指标的监控数据,也主要来自这些系统表。…

docoker笔记

0.安装Docker Docker 分为 CE 和 EE 两大版本。CE 即社区版(免费,支持周期 7 个月),EE 即企业版,强调安全,付费使用,支持周期 24 个月。 Docker CE 分为 stable test 和 nightly 三个更新频道…