智驾系统的设计瓶颈之:电源管理设计中的功能安全和状态机

news2024/10/6 5:59:26

摘要:

本文从智驾系统电源管理设计的角度详细分析了整个系统的电源设计方式。

在整车电源管理中,IC 需要将多轨降压、升压和 LDO 稳压功能与每个电轨的参数,以及与其他电轨间交互的复杂可配置能力整合在一起。对于智驾系统设计人员而言,都需要清楚,稳定、准确、高效的直流 (DC) 供电轨是实现系统可靠、一致运行的必要条件。通常由 DC/DC 开关稳压器(转换器)和低压降稳压器 (LDO) 组合提供各种电压,每一个稳压器都与其所支持电轨的特定电压、电流、精度、噪声、瞬态响应以及其他需求相匹配。

前文对智驾系统的整个电源设计进行了详细说明,但是考虑到电源设计在实际应用中还需要充分考虑这个电源管理的状态设计,以及从状态设计中衍生出的功能安全设计。首先,整个电源管理的状态是需要根据对应用芯片的供电能力进行适配的;其次,在电源适配过程中,还需要在防错、纠呆上做出合理的设计。因此,本文将接续前文对电源管理设计中的功能安全和状态机进行详细说明。

1、电源管理模块中的功能安全设计

通常情况,对于电源管理的整个模块而言,其功能安全设计等级一般需要达到ASIL-B以上。这一过程需要充分考虑到电源管理模块(主要是PMIC、LDO等)是如何进行电源输出流分配、过压监测、低压预警以及电压供给模块失效后的处理策略等。

如下表示了PMIC在智驾系统架构设计的要素说明,以及对应的电源分布式网络设计能力要求。

PMIC 内部过压和欠压监控及其各自的监控阈值水平是默认启用的,整车启动后可通过 I2C 更新。PMIC 电源轨直接连接到默认状态下的监视处理器,而不是直接监控通过负载开关供电的轨道。在为处理器的MCU I/O 供电的负载开关输出电压时,建议将POK 监视器内置于处理器的 VDDSHV0_MCU 电压域中来使用。TPS65941212-Q1 中未使用的反馈引脚 BUCK3 的FB_B3可用于监控外部降压稳压器。用于监控为主 I/O 供电的负载开关电压,TPS65941111-Q1中另一个未使用的反馈的引脚(FB_B3 或 FB_B4)可通过 I2C 配置并连接到负载开关来启用监控模块。

如下图,还是以双PMIC电源管理模块举例。PDN 在输入电源和 PMIC 之间有一个串联的外部功率模块FET。FET前后的电压由PMIC监控,PMIC通过OVPGDRV管脚控制FET。前文所示的MCU 和主 I/O 域供电的负载开关、DDR 供电的分立式降压以及为 EFUSE 供电的分立式 LDO 都连接在 FET 之后,这样可以延长对这些处理器域和分立电源过电压保护的能力。当在输入电源上检测到大于6V 的过压这一事件时,连接外部处理器的端口FET 可以将其串联的设备与PMIC进行快速隔离,以便保护包括来自FET输出的所有电源轨系统免受损坏。当然,在FET上游连接的任何电源也都不受过压事件的保护。

PMIC 内部过压和欠压监控及其各自的监控阈值水平是默认启用的,并且可在启动后通过 I2C 更新相应的监控阈值。默认情况下,该监控控制是直接连接到处理器的 PMIC 电源轨上的,且可不直接通过负载开关供电的轨道来做监控。同时,整个I2C控制线可以为处理器的MCU I/O 供电的负载开关输出电压,一个未使用的反馈TPS65941111-Q1 的引脚(FB_B3 或 FB_B4)可通过 I2C 配置并连接到负载开关来启用整个监控。建议使用供电源FB_B3来监控外部降压稳压器LDO,也可用于为主 I/O 供电的负载开关电压做监控。

内部看门狗在主 TPS6594-Q1 设备上是默认启用的。一旦设备处于活动状态,就可以通过设备中的辅助 I2C 配置触发器或 Q&A 设置看门狗。默认情况下可以不启用主从I2C CRC,但必须采用 I2C_2 触发器来启用PMIC芯片。一旦启用,从片I2C 将被直接禁用 2ms,因为启用 I2C CRC 通常需要等待至少 2ms,然后再启动 Q&A 看门狗。如果在初始开发期间需要暂停看门狗功能或系统不需要此功能,则将主 TPS6594-Q1 的GPIO_8 上的取消设置 DISABLE_WDOG 信号设置为高电平,即可禁用看门狗定时器。

主TPS6594-Q1的PMIC 中的GPIO_7端口被配置为 MCU错误信号监视器,且必须启用通过 ESM_MCU_EN 寄存器位。MCU复位是通过初级DCDC之间的连接来支持PMIC nRSTOUT 引脚和处理器的 MCU_PORz。最后,在两个 I2C 端口之间设置了TPS6594-Q1 和处理器。第一个用于所有非看门狗通信,例如电压电平控制;第二个允许看门狗在独立的通信通道上进行有效监控。

最后,为了达到安全的电源状态状态SAFE,预设置状态机PFSM需要自动跳转到可进行安全自修复SAFE_RECOVERY的硬件有限状态机中。在技术校验过程中,从SAFE_RECOVERY 状态开始,计数器会恢复递增并与恢复计数阈值进行比较。如果达到恢复计数阈值,则 PMIC 会停止恢复尝试并需要重启电源。

2、关于电源分配和管理的有限状态机分配

数字信号的连接允许系统功能,包括MCU Only下仅使用 MCU 安全岛和挂起至 RAM 低功耗模式,功能安全性高达 ASIL-D,兼容双电压 SD 卡操作和LPDDR4x 集成。处理器和 PMIC 器件之间需要有相应的数字控制信号映射。对于两个PMIC设备一起工作时,主 PMIC 和辅助 PMIC 必须建立 SPMI 通信渠道。这允许两个 TPS6594-Q1 同步其内部预配置状态机(PFSM)以便它们作为一个 PFSM 在所有电源和数字资源中运行,TPS6594-Q1上的GPIO_5 和 GPIO_6 引脚分配可以用于此功能。此外,主 PMIC LDOVINT 引脚需要连接到二次 PMIC ENABLE 输入就可以正确启动该预置的有限状态机 PFSM。

在下图中,显示了已配置的 PDN 电源状态,以及在两者之间移动的转换条件。此外,还显示了到硬件状态的转换,例如 SAFE RECOVERY 和 LP_STANDBY(Low Power Standby),硬件状态是固定设备电源有限状态机 (FSM) 的一部分。

当 PMIC 从 FSM 转换到 PFSM 时,会执行多个初始化指令。比如禁用看门狗(BUCK)功能,以及对LDO 稳压器上的剩余电压进行检查,然后设置 FIRST_STARTUP_DONE 位。执行这些指令后,PMIC 在进入 ACTIVE 状态之前等待有效的 ON 触发请求(SU_ACTIVE 触发器)。

在电源配置网络PDN 中,PMIC 设备具有四种配置的电源状态。主要包含以下基础的状态设置外,在电源管理模块中还设置了如何从其他硬件状态中跳转到对应的PMIC主状态中。

每个电源状态的定义如下所述。

• Standby(待机):此时电源管理系统PMIC 由系统电源轨 (VCCA > VCCA_UV) 上的有效电源供电,所有设备资源都在 STANDBY 状态下断电。EN_DRV 在此状态下被强制置位为低电平,处理器处于关闭状态,没有电压域通电。可以选择使用主TPS6594-Q1 EN_DRV引脚来指示已检测到错误,确保系统正在进入SAFE状态。如果系统具有一些需要由错误事件驱动的附加外部电路,则可以利用该信号。

任何其他运行状态均可以通过立即或间歇性的关闭条件(OFF Request)进入Standby状态。而如果出现严重或者中等错误时,电源管理系统将从Standby状态跳到安全回收状态和低功耗的待机状态LP_Standby。

• Active(激活):在激活状态下,PMIC可以直接对相应的ECU进行有源供电。此状态下PMIC 功能最为齐全,可为所有分布式电源网络中的节点负载供电。此时,各处理器已按照推荐的上电顺序完成对应模块的上电操作。从智驾系统看,其对应所有的电压域在MCU和主处理器SOC部分均已通电。

激活期间可能出现由于ESM故障或看门狗故障导致的热重启,该重启过程不会改变整个电源管理控制状态,热重启后仍然保持在Active状态。

如果该激活状态下接收到外部发送得请求进入轻睡眠指令后,系统将跳转至MCU Only状态,该状态下系统只启动对应的MCU模块来进行相应的指令运算。

• MCU Only(仅MCU模式):MCU Only模式是狭义上针对诸如TDA4这一类超异构芯片所单独开发的低功耗模式,顾名思义,在该模式下,智驾系统中央域控只启动MCU模块进行相应的运算控制。广义上,纯异构芯片架构组成的智驾域控系统也存在MCU Only模式。只是相对于超异构芯片这种模式的架构来说,纯异构芯片架构在电源控制这一块上,相对更加简单可控。因为各个芯片本身的构造在电源树上就是完全解耦的。

当然,从供电逻辑上讲,整个MCU Only模块也需要电源管理模块PMIC 直接进行有源供电。此时,分配给处理器 MCU Only工作模块的导轨电源资源将被动开启。

此外,MCU ONLY 模式的另一种特殊情况是由于SOC电源错误而进入该状态。在这种情况下,PMIC 无法转换到活动状态或其他状态,直到处理器有意将 PMIC专门用于 MCU ONLY 状态控制。在触发TO_MCU 这一启动时序并“重新进入”MCU ONLY 状态后,PMIC 可以转换回 ACTIVE 状态。

对于MCU Only模式下,仍然可以在ESM故障或看门狗故障导致的热重启后保持在MCU Only状态。同时,MCU Only 状态也可以被重新唤醒进入到正常激活状态Active。

• Suspend-to-RAM (悬置存储):这种状态是专门考虑到智驾系统在很多情况下只在对运算的中间数据和结果数据进行存储的过程中的情况。这种情况更多的是系统挂起后进入简单的读写操作,占用的系统资源也主要是逻辑CPU运算资源。此阶段也要求PMIC 直接进行有源供电,只有3个SoC的三个存储电压域保持通电即可,而所有其他域都关闭以最大限度地降低系统总功耗。EN_DRV 在此状态下强制为低电平。

悬置存储状态可以在用户重新触发激活指令(即WKUP 0—>1)时,将重新控制电源输入从而进入正常的电源供电状态。

3、PMIC有限状态机转化条件说明

如下表描述了每个触发器说明,其从最高优先级(立即关断)的相关状态转换到最低优先级、的整个跳转过程。同时,还表示了较高优先级的活动触发器到较低优先级的块触发器的触发顺序。

这里需要注意的是如果设置了 LP_STANDBY_SEL 位,则 PFSM 转换为 LP_STANDBY 的硬件 FSM 状态。当 LP_STANDBY 作为输入时,需要使用适当的机制来唤醒外围设备。I2C_0、I2C_1、I2C_2 和 I2C_3 是自清除触发器。启用I2C CRC,同时启用I2C1和I2C2 上的 CRC,但是,启用 CRC 后 I2C2 被禁用 2ms。

对于设置电源管理的有限状态机而言,有多种触发器可以启用已配置状态之间的状态转换。主PMIC的NSLEEP1和NSLEEP2两种进入轻睡眠的指令是通过GPIO引脚或寄存器Register位来进行有效访问的。如果寄存器位或GPIO引脚被拉高,则NSLEEP x值将被读取为逻辑高电平。OTA更新完成后,需要重启PMIC 整个状态机才能应用新的网络报文管理 NVM 设置。

实际上PMIC(TPS6594-Q1)器件电源管理模块是由固定寄存器和从NVM加载的可配置寄存器组成。对于所有NVM 寄存器,需要提供加载到寄存器中的初始NVM 设置,但是,这些初始 NVM 设置可以在状态转换期间更改,例如从STANDBY 模式移动到 ACTIVE 模式时,寄存器映射会从固定寄存器的默认值跳转到其他状态值。在 TPS6594-Q1 数据表中,有七种基于应用的配置可供每个 BUCK 在其中运行。七种配置还具有最佳输出电感值,可在这些不同条件下优化每个降压器的性能。

4、写在最后

本文从智驾系统电源管理设计的角度详细分析了整个系统的电源设计方式。通过实例阐述主要分为几个主要的部分:智驾系统架构电源管理Profile、智能驾驶系统基础电源树设计、基于实例的电源网络管理、电源管理模块中的功能安全设计、电源分配和管理的有限状态机分配。以上几个电源设计方面都是围绕智驾系统架构而言,在充分考虑了使用端SOC、MCU的连接方式以及需求电压值。本文主要介绍了PMIC的电源管理设计方法,为满足当今智驾系统更复杂的需求,PMIC 还必须加大其输出范围,提升其原始 DC 性能,改进其附加功能,并提高用户定义的灵活性。此外,它们必须将这些增强与更高级别的功能集成整合在一起,以减少电源管理功能的总占用面积,从而确保所设计的智驾域控不会超出更大的体积范围。

作者 | Orchid

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/442341.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python中类的属性、多继承、自省机制中的__mro__、__dict__ 和dir介绍

一、通过类名修改属性和通过类的实例去修改类的属性的区别 在 Python 中,类的属性可以通过类名或类的实例访问和修改。但是,通过类名修改属性和通过类的实例修改属性之间有一些区别。通过类名修改属性实际上是修改类的属性。这意味着如果你修改了类的属性…

GrapeCity Documents for Word 6.1.0

GrapeCity Documents for Word 6.1.0 改进了聚合函数中多个表达式的使用。 特征 GcWord 模板: 现在可以使用表达式作为聚合函数的参数。表达式可以在函数中使用常量、聚合或两个集合。现在可以进行以下计算: 使用常量 - {{ calc Sum(2 ds.value)}}。在聚…

5.MapReduce概述

ps.实际生产环境中并不会使用mapReduce,而是spark和flink,但是它可以建立分布式的思想。 1.MapReduce框架 2.mapReduce小项目练习 ps.基本流程:一般都是在代码层面引入hadoop依赖,然后在windows环境下进行代码编写测试,没有问题的话,把代码打包成jar包,然后拖入xShell,利用…

基于单片机的电路特性测试仪的设计

摘 要 当今社会科技的飞速发展,智能和便捷已经成为人们的日常诉求。现在放大电路在使用过程中经常出现故障,并且需要测试电路数据,但是大多数是手动进行测试,一定程度上影响了工作效率。 为了测量数据更安全更便捷,针…

YOLOv8 更换主干网络之 GhostNetV2

《GhostNetV2:Enhance Cheap Operation with Long-Range Attention》 轻量级卷积神经网络(CNN)是专门为在移动设备上具有更快推理速度的应用而设计的。卷积操作只能捕捉窗口区域内的局部信息,这防止了性能的进一步提高。将自注意力引入卷积可以很好地捕捉全局信息,但这将大…

MySQL-----表的增删查改

文章目录 前言一、create1. 单行数据 全列插入2. 多行数据 指定列插入3. 插入冲突否则更新4. 替换 二、retrieve1. select列1.1 全列查询1.2 指定列查询1.3 查询字段为表达式1.4 为查询结果指定别名1.5 结果去重 2. where条件2.1 英语不及格的同学及英语成绩 ( < 60 )2.2 …

Google浏览器翻译无法正常使用解决

1.查找可用服务器地址 按WinR键打开运行→输入cmd回车&#xff0c;打开命令提示符→输入ping google.cn 回车。记录一下下图红框里的ip地址&#xff0c;一会要用到 最近自己ping出来的ip可能不能用了&#xff0c;可以尝试用下面的ip 142.251.163.90 142.250.113.90 142.251.…

springcloudfeign原理和流程

什么是Feign&#xff1f; Feign 的英文表意为“假装&#xff0c;伪装&#xff0c;变形”&#xff0c; 是一个http请求调用的轻量级框架&#xff0c;可以以Java接口注解的方式调用Http请求&#xff0c;而不用像Java中通过封装HTTP请求报文的方式直接调用。Feign通过处理注解&am…

【Cisco Packet Tracer| 四.跨交换机VLAN实验】

文章目录 一.连接实验拓扑图并设置主机IP地址1.连接实验拓扑图2.设置主机的IP地址 二.划分VLAN前测试是否ping通三.划分VLAN1.给主机划分VLAN2.给交换机之间的f0/24端口从Access模式切换到Trunk模式 四.划分VLAN后测试是否ping通五.另一种测试方式-信封图标 一.连接实验拓扑图并…

nginx加tomcat动静分离,负载均衡

tomcat是什么&#xff1a;java开发的开源服务器 处理动态页面&#xff0c;静态页面处理能力一般 jvm参数优化 配置添加 在119行之前 以2cpu 4G内存为例 JAVA_OPTS"$JAVA_OPTS -server -Xms2048m -Xmx2048m -Xmn768m -XX:ParallelGCThreads2 -XX:PermSize1024m -XX:MaxP…

IS230TCISH6C集成电路分类有哪些呢

​ IS230TCISH6C集成电路分类有哪些呢 集成电路分类有哪些 集成电路是一种微型电子器件或部件&#xff0c;集成电路有很多种&#xff0c;那么集成电路分类有哪些呢&#xff0c;下面小编就为大家介绍集成电路的分类。 按功能结构区分 模拟集成电路 数字集成电路 数/模混合集成电…

JavaSE学习进阶day06_04 集合的嵌套和不可变集合

接昨天讲的内容&#xff0c;今天还要继续学习集合。学完今天的内容&#xff0c;集合就告于段落了&#xff0c;坚持&#xff01; 集合的嵌套&#xff08;掌握&#xff01;&#xff09;&#xff1a; 什么是集合的嵌套&#xff1f;为什么要集合的嵌套&#xff1f;为了搞清楚这个…

算法篇——层序遍历大集合(js版)

102.二叉树的层序遍历 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 链接&#xff1a;力扣 var levelOrder function(root) {var res [], queue [];if(!root) return res;// 队列…

海斯坦普Gestamp EDI 需求分析

海斯坦普Gestamp&#xff08;以下简称&#xff1a;Gestamp&#xff09;是一家总部位于西班牙的全球性汽车零部件制造商&#xff0c;目前在全球23个国家拥有超过100家工厂。Gestamp的业务涵盖了车身、底盘和机电系统等多个领域&#xff0c;其产品范围包括钣金、车身结构件、车轮…

非极大值抑制详细原理(NMS含代码及详细注释)

作者主页&#xff1a;爱笑的男孩。的博客_CSDN博客-深度学习,YOLO,活动领域博主爱笑的男孩。擅长深度学习,YOLO,活动,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域.https://blog.csdn.net/Code_and516?typecollect 个…

配置vscode arcpy环境 基于ArcGIS的python

最近可能要用到arcpy&#xff0c;我以前这是知道有这个东西&#xff0c;但是没用过&#xff0c;今天正好记录下利用vsCode编译器&#xff0c;python开发来配置arcpy环境。 1.安装ArcGIS desktop 2.下载安装vscode 上面的两步没啥可说的&#xff0c;很简单&#xff0c;我要说…

ArcGIS、ENVI、InVEST、FRAGSTATS多技术融合提升环境、生态、水文、土地、土壤、农业、大气领域应用

基于ArcGIS、ENVI、InVEST、FRAGSTATS等多技术融合提升环境、生态、水文、土地、土壤、农业、大气等领域的数据分析能力与项目科研水平 点击查看原文 一、空间数据获取与制图 1.1 软件安装与应用讲解 1.2 空间数据介绍 1.3海量空间数据下载 1.4 ArcGIS软件快速入门 1.5 …

性能优化之-更高效的数据渲染

前言&#xff1a;中心思想还是让请求的资源得到更快响应的方法&#xff0c;比如压缩资源&#xff0c;减少数据量的大小&#xff0c;缓存数据以减少请求数量&#xff0c;http/2让网络传输变得更快这些&#xff0c;下面就让我们来看看浏览器是如何解析这些数据&#xff0c;最终又…

数据结构——红黑树

红黑树 概念与性质树节点的定义插入红黑树的验证红黑树与AVL树的对比 概念与性质 概念&#xff1a; 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色…

数字IC设计——功耗分析

一、概述 芯片的整体功耗很难通过简单的电流&#xff0c;电压或者电阻值的的相乘来计算。其原因在于&#xff0c;由于芯片作为具有复杂功能的器件&#xff0c;其功耗会根据其不同时段的不同行为&#xff0c;不同的外部条件而发生很大的变化。 1.1 功耗的分类 数字IC芯片的功…