YOLOv7+单目测距(python)

news2024/11/15 20:46:02

YOLOv7+单目测距(python)

  • 1. 相关配置
  • 2. 测距原理
  • 3. 相机标定
    • 3.1:标定方法1
    • 3.2:标定方法2
  • 4. 相机测距
    • 4.1 测距添加
    • 4.2 主代码
  • 5. 实验效果

相关链接
1. YOLOV5 + 单目测距(python)
2. YOLOV5 + 双目测距(python)
3. YOLOV7 + 双目测距(python)
4. 具体实现效果已在Bilibili发布,点击跳转

本篇博文工程源码下载
链接1:https://download.csdn.net/download/qq_45077760/87708470
链接2:https://github.com/up-up-up-up/yolov7_Monocular_ranging

文章结构前三章节和 YOLOV5 + 单目测距 这篇博文一样,如看过该博文,直接跳转第四章节

1. 相关配置

系统:win 10
YOLO版本:yolov7
拍摄视频设备:安卓手机
电脑显卡:NVIDIA 2080Ti(CPU也可以跑,GPU只是起到加速推理效果)

2. 测距原理

单目测距原理相较于双目十分简单,无需进行立体匹配,仅需利用下边公式线性转换即可:

                                        D = (F*W)/P

其中D是目标到摄像机的距离, F是摄像机焦距(焦距需要自己进行标定获取), W是目标的宽度或者高度(行人检测一般以人的身高为基准), P是指目标在图像中所占据的像素
在这里插入图片描述
了解基本原理后,下边就进行实操阶段

3. 相机标定

3.1:标定方法1

可以参考张学友标定法获取相机的焦距

3.2:标定方法2

直接使用代码获得焦距,需要提前拍摄一个矩形物体,拍摄时候相机固定,距离被拍摄物体自行设定,并一直保持此距离,背景为纯色,不要出现杂物;最后将拍摄的视频用以下代码检测:

import cv2

win_width = 1920
win_height = 1080
mid_width = int(win_width / 2)
mid_height = int(win_height / 2)

foc = 1990.0       # 根据教程调试相机焦距
real_wid = 9.05   # A4纸横着的时候的宽度,视频拍摄A4纸要横拍,镜头横,A4纸也横
font = cv2.FONT_HERSHEY_SIMPLEX
w_ok = 1

capture = cv2.VideoCapture('5.mp4')
capture.set(3, win_width)
capture.set(4, win_height)

while (True):
    ret, frame = capture.read()
    # frame = cv2.flip(frame, 1)
    if ret == False:
        break

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    ret, binary = cv2.threshold(gray, 140, 200, 60)    # 扫描不到纸张轮廓时,要更改阈值,直到方框紧密框住纸张
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    binary = cv2.dilate(binary, kernel, iterations=2)
    contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    # cv2.drawContours(frame, contours, -1, (0, 255, 0), 2)    # 查看所检测到的轮框
    for c in contours:
        if cv2.contourArea(c) < 1000:  # 对于矩形区域,只显示大于给定阈值的轮廓,所以一些微小的变化不会显示。对于光照不变和噪声低的摄像头可不设定轮廓最小尺寸的阈值
            continue

        x, y, w, h = cv2.boundingRect(c)  # 该函数计算矩形的边界框

        if x > mid_width or y > mid_height:
            continue
        if (x + w) < mid_width or (y + h) < mid_height:
            continue
        if h > w:
            continue
        if x == 0 or y == 0:
            continue
        if x == win_width or y == win_height:
            continue

        w_ok = w
        cv2.rectangle(frame, (x + 1, y + 1), (x + w_ok - 1, y + h - 1), (0, 255, 0), 2)

    dis_inch = (real_wid * foc) / (w_ok - 2)
    dis_cm = dis_inch * 2.54
    # os.system("cls")
    # print("Distance : ", dis_cm, "cm")
    frame = cv2.putText(frame, "%.2fcm" % (dis_cm), (5, 25), font, 0.8, (0, 255, 0), 2)
    frame = cv2.putText(frame, "+", (mid_width, mid_height), font, 1.0, (0, 255, 0), 2)

    cv2.namedWindow('res', 0)
    cv2.namedWindow('gray', 0)
    cv2.resizeWindow('res', win_width, win_height)
    cv2.resizeWindow('gray', win_width, win_height)
    cv2.imshow('res', frame)
    cv2.imshow('gray', binary)

    c = cv2.waitKey(40)
    if c == 27:    # 按退出键esc关闭窗口
        break

cv2.destroyAllWindows()

反复调节 ret, binary = cv2.threshold(gray, 140, 200, 60)这一行里边的三个参数,直到线条紧紧包裹住你所拍摄视频的物体,然后调整相机焦距直到左上角距离和你拍摄视频时相机到物体的距离接近为止
在这里插入图片描述
然后将相机焦距写进测距代码distance.py文件里,这里行人用高度表示,根据公式 D = (F*W)/P,知道相机焦距F、行人的高度66.9(单位英寸→170cm/2.54)、像素点距离 h,即可求出相机到物体距离D。 这里用到h-2是因为框的上下边界像素点不接触物体

foc = 1990.0        # 镜头焦距
real_hight_person = 66.9   # 行人高度
real_hight_car = 57.08      # 轿车高度

# 自定义函数,单目测距
def person_distance(h):
    dis_inch = (real_hight_person * foc) / (h - 2)
    dis_cm = dis_inch * 2.54
    dis_cm = int(dis_cm)
    dis_m = dis_cm/100
    return dis_m

def car_distance(h):
    dis_inch = (real_hight_car * foc) / (h - 2)
    dis_cm = dis_inch * 2.54
    dis_cm = int(dis_cm)
    dis_m = dis_cm/100
    return dis_m

4. 相机测距

4.1 测距添加

主要是把测距部分加在了画框附近,首先提取边框的像素点坐标,然后计算边框像素点高度,在根据 公式 D = (F*W)/P 计算目标距离

for *xyxy, conf, cls in reversed(det):
    if save_txt:  # Write to file
        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
        with open(txt_path + '.txt', 'a') as f:
            f.write(('%g ' * len(line)).rstrip() % line + '\n')

    if save_img or view_img:  # Add bbox to image
        x1 = int(xyxy[0])  # 获取四个边框坐标
        y1 = int(xyxy[1])
        x2 = int(xyxy[2])
        y2 = int(xyxy[3])
        h = y2 - y1
        label = f'{names[int(cls)]} {conf:.2f}'
        if label is not None:
            if (label.split())[0] == 'person':
                dis_m = person_distance(h)  # 调用函数,计算行人实际高度
                label += f'  {dis_m}m'  # 将行人距离显示写在标签后
                plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)

            if (label.split())[0] == 'car' or (label.split())[0] == 'truck':
                dis_m = car_distance(h)  # 调用函数,计算行人实际高度
                label += f'  {dis_m}m'  # 将行人距离显示写在标签后
                plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)

4.2 主代码

import argparse
import time
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random

from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
    scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
from distance import person_distance,car_distance


def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
    save_img = not opt.nosave and not source.endswith('.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size

    if trace:
        model = TracedModel(model, device, opt.img_size)

    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    old_img_w = old_img_h = imgsz
    old_img_b = 1

    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Warmup
        if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
            old_img_b = img.shape[0]
            old_img_h = img.shape[2]
            old_img_w = img.shape[3]
            for i in range(3):
                model(img, augment=opt.augment)[0]

        # Inference
        t1 = time_synchronized()
        with torch.no_grad():   # Calculating gradients would cause a GPU memory leak
            pred = model(img, augment=opt.augment)[0]
        t2 = time_synchronized()

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t3 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        x1 = int(xyxy[0])  # 获取四个边框坐标
                        y1 = int(xyxy[1])
                        x2 = int(xyxy[2])
                        y2 = int(xyxy[3])
                        h = y2 - y1
                        label = f'{names[int(cls)]} {conf:.2f}'
                        if label is not None:
                            if (label.split())[0] == 'person':
                                dis_m = person_distance(h)  # 调用函数,计算行人实际高度
                                label += f'  {dis_m}m'  # 将行人距离显示写在标签后
                                plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)

                            if (label.split())[0] == 'car' or (label.split())[0] == 'truck':
                                dis_m = car_distance(h)  # 调用函数,计算行人实际高度
                                label += f'  {dis_m}m'  # 将行人距离显示写在标签后
                                plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)

            # Print time (inference + NMS)
            print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                    print(f" The image with the result is saved in: {save_path}")
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        #print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
    parser.add_argument('--source', type=str, default='inference/images/2.mp4', help='source')  # file/folder, 0 for webcam
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
    opt = parser.parse_args()
    print(opt)
    #check_requirements(exclude=('pycocotools', 'thop'))

    with torch.no_grad():
        if opt.update:  # update all models (to fix SourceChangeWarning)
            for opt.weights in ['yolov7.pt']:
                detect()
                strip_optimizer(opt.weights)
        else:
            detect()

5. 实验效果

由于yolov7和yolov5机制问题,yolov7推理时间相较于yolov5较长,实验效果如下

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/439394.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于springboot的招聘信息管理系统源码数据库论文

目 录 1 绪 论 1.1 课题背景与意义 1.2 系统实现的功能 1.3 课题研究现状 2系统相关技术 2.1 Java语言介绍 2.2 B/S架构 2.3 MySQL 数据库介绍 2.4 MySQL环境配置 2.5 SpringBoot框架 3系统需求分析 3.1系统功能 3.2可行性研究 3.2.1 经济可行性 …

力扣sql中等篇练习(六)

力扣sql中等篇练习(六) 1 购买了产品A和产品B却没有购买产品C的顾客 1.1 题目内容 1.1.1 基本题目信息 1.1.2 示例输入输出 1.2 示例sql语句 # 先求出既有的,然后再去筛选掉没有的 # 去重用不了内连接 SELECT t1.customer_id,c.customer_name FROM ( SELECT distinct cust…

《Spring MVC》 第二章 第一个程序

前言 Spring MVC 是 Spring 框架提供的一款基于 MVC 模式的轻量级 Web 开发框架。 Spring MVC 本质是对 Servlet 的进一步封装&#xff0c;其最核心的组件是DispatcherServlet&#xff0c;它是 Spring MVC 的前端控制器&#xff0c;主要负责对请求和响应的统一地处理和分发。C…

C++ auto 内联函数 指针空值

本博客基于 上一篇博客的 序章&#xff0c;主要对 C 当中对C语言的缺陷 做的优化处理。 上一篇博客&#xff1a;C 命名空间 输入输出 缺省参数 引用 函数重载_chihiro1122的博客-CSDN博客 auto关键字 auto作为一个新的类型指示符来指示编译器&#xff0c;auto声明的变量必须由…

uni-app使用时遇到的坑

一.uni-app开发规范 1.微信小程序request请求需要https 小程序端&#xff1a; 在本地运行时&#xff0c;可以使用http 但是预览或者上传时&#xff0c;使用http无法请求 APP端&#xff1a; 一般APP可以使用http访问 高版本的APP可能需要用https访问 二. uni-app项目 配置App升…

Java语言请求示例,电商商品详情接口,接口封装

Java具有大部分编程语言所共有的一些特征&#xff0c;被特意设计用于互联网的分布式环境。Java具有类似于C语言的形式和感觉&#xff0c;但它要比C语言更易于使用&#xff0c;而且在编程时彻底采用了一种以对象为导向的方式。 使用Java编写的应用程序&#xff0c;既可以在一台…

如何更好的进行数据管理?10 条建议给到你

这个时代数据量的快速增长和数据复杂性的大幅度提高&#xff0c;让企业迫切的寻找更加智能的方式管理数据&#xff0c;从而有效提高 IT 效率。 管理数据库不是单一的目标&#xff0c;而是多个目标并行&#xff0c;如数据存储优化、效率、性能、安全。只有管理好数据从创建到删除…

newman结合jenkins实现自动化测试

一、背景 为了更好的保障产品质量和提升工作效率&#xff0c;使用自动化技术来执行测试用例。 二、技术实现 三、工具安装 3.1 安装newman npm install -g newman查看newman版本安装是否成功&#xff0c;打开命令行&#xff0c;输入newman -v&#xff0c;出现 版本信息即安…

浅述 国产仪器 6362D光谱分析仪

6362D光谱分析仪&#xff08;简称&#xff1a;光谱仪&#xff09;是一款高分辨、大动态高速高性能光谱分析仪&#xff0c;适用于600&#xff5e;1700nm光谱范围的DWDM、光放大器等光系统测试&#xff1b; LED、FP-LD、DFB-LD、光收发器等光有源器件测试&#xff1b;光纤、光纤光…

C语言基础应用(五)循环结构

引言 如果要求123…100&#xff0c;你会怎么求解呢&#xff1f; 如果按照常规代码 int main() {int sum 0;sum 1;sum 2;sum 3;...sum 100;printf("The value of sum is %d\n",sum);return 0; }就会特别麻烦&#xff0c;并且代码过于冗长。下面将引入循环的概念…

硬件知识的基础学习

GPIO、继电器、三极管、PWM、MOS管 的 输入与输出。 本人没有系统的学习过专业的硬件知识&#xff0c;只有在实践过程中向前辈简单的学习&#xff0c;若有问题&#xff0c;还请大佬指正。 目录 一、GPIO 1.1 输入与输出的区别 1.2 输入 1.2.1 电流流向和电阻区分上拉输入…

动力节点老杜Vue笔记——Vue程序初体验

目录 一、Vue程序初体验 1.1 下载并安装vue.js 1.2 第一个Vue程序 1.3 Vue的data配置项 1.4 Vue的template配置项 一、Vue程序初体验 可以先不去了解Vue框架的发展历史、Vue框架有什么特点、Vue是谁开发的&#xff0c;对我们编写Vue程序起不到太大的作用&#xff0c;…

计算机网络 实验六

⭐计网实验专栏&#xff0c;欢迎订阅与关注&#xff01; ★观前提示&#xff1a;本篇内容为计算机网络实验。内容可能会不符合每个人实验的要求&#xff0c;因此以下内容建议仅做思路参考。 一、实验目的 掌握以太网帧的格式及各字段的含义掌握IP包的组成格式及各字段的含义掌…

java中HashMap的使用

HashMap 键值对关系&#xff0c;值可以重复&#xff0c;可以实现多对一&#xff0c;可以查找重复元素 记录&#xff1a; 做算法遇到好多次了&#xff0c;就总结一下大概用法。 例如今天遇到的这个题&#xff1a; 寻找出现一次的数&#xff0c;那就使用哈希表来存储&#xf…

X射线吸收光谱知识点

1) 什么是XAS XAS是X-ray Absorbtion Spectra的缩写&#xff0c;全称为X射线吸收光谱。X射线透过样品后&#xff0c;其强度发生衰减且其衰减程度与材料结构、组成有关。这种研究透射强度I与入射X射线强度Io之间的关系&#xff0c;称为X射线吸收光谱;由于其透射光强与元素、原子…

express项目的创建

前言 前端开发者若要进行后端开发&#xff0c;大多都会选择node.js&#xff0c;在node生态下是有大量框架的&#xff0c;其中最受新手喜爱的便是老牌的express.js&#xff0c;接下来我们就从零创建一个express项目。 安装node 在这里&#xff1a;https://nodejs.org/dist/v16…

《Linux0.11源码解读》理解(一)

计算机启动时, 内存(RAM)没有任何东西, 自然也无法跑操作系统. 但是可以执行固化在ROM里面的BIOS程序. 在按下电源键的一刻. CPU的cs和ip寄存器硬件被设置为0xf000和0xfff0, 于是cs:ip也就指向0xffff0这个地址, 而这个地址正是指向了ROM的BIOS范围(这里是0xfe000~0xfffff, 20根…

2023 减少人工标注,获取大量数据的能力

关键词&#xff1a; 零样本泛化能力模型 半监督 减少人工标注成本&#xff1a; 1、CVPR 2023 | 单阶段半监督目标检测SOTA&#xff1a;ARSL https://zhuanlan.zhihu.com/p/620076458 2、CVPR 2023 | 标注500类&#xff0c;检测7000类&#xff01;清华大学等提出通用目标检测算…

Java版本工程行业管理系统源码-专业的工程管理软件-提供一站式服务

Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下&#xff1a; 首页 工作台&#xff1a;待办工作、消息通知、预警信息&#xff0c;点击可进入相应的列表 项目进度图表&#xff1a;选择&#xff08;总体或单个&#xff09;项目显示1…

java Excel清除表格条件格式规则

© Ptw-cwl 目录 文章目录 目录Excel清除表格条件格式规则1.开始 -> 条件格式2.条件格式 -> 清除规则3.管理规则也能删除 代码报java.lang.IllegalArgumentException: Specified CF index 43 is outside the allowable range (0..42)如何解决源码 Excel清除表格条件…