文章目录
- 说明
- day32 图的连通性检测
- 1.思路
- 1.1矩阵表示
- 1.2.矩阵相乘
- 1.3结合矩阵运算思考图的连通性。
- 2.代码
说明
闵老师的文章链接: 日撸 Java 三百行(总述)_minfanphd的博客-CSDN博客
自己也把手敲的代码放在了github上维护:https://github.com/fulisha-ok/sampledata
day32 图的连通性检测
1.思路
1.1矩阵表示
看一个矩阵M,Vi->Vj值不为0,则说明vi能到vj(对角线表示自身)
1.2.矩阵相乘
矩阵相乘运算(如MM = M^2 )。矩阵运算:求一个结点的运算
∑
i
=
1
n
m
i
k
⋅
m
k
j
\displaystyle\sum_{i=1}^{n} m_{ik}\cdot m_{kj}
i=1∑nmik⋅mkj。
结合上面的图,三个结点1 2 3; m32 = 1代表3到2有路径,m32m21 = 1 代表代表3到2有路径,且2到1有路径,进而3到1有路径,只不过需要通过2这个结点。如这里m31m11+m32m21+m33*m31=1表明3到1 只有一条路径。
1.3结合矩阵运算思考图的连通性。
-
(1) 连通
当Vi->Vj不能直连时(若最后能相连)则其中会经过一个或几个中间结点。Vi->Vk,Vk->Vj.
所以假设 m i k ⋅ m k j = 1 m_{ik}\cdot m_{kj}=1 mik⋅mkj=1 可以理解为从Vi->Vk有路径,Vk->Vj有路径,则相乘为1,则Vi->Vj就存在一条路径,且长度是为2的路径连通。 通过公式
∑ k = 1 n m i k ⋅ m k j \sum_{k=1}^{n}m_{ik}\cdot m_{kj} k=1∑nmik⋅mkj 若值等于0说明不连通,若值大于0说明连通,且可以知道Vi到Vj有几条路。 -
(2) 不连通
假设 m i k ⋅ m k j = 0 m_{ik}\cdot m_{kj}=0 mik⋅mkj=0表示不存在Vi->Vj这样的路径.
所以矩阵相乘可以去看矩阵的连通性。进一步 M n M^{n} Mn就是长度为m路的数目。
2.代码
再来看文章中: M a = M 0 + M 1 + . . . + M n − 1 M_{a} = M^{0} + M^{1} + ...+ M^{n-1} Ma=M0+M1+...+Mn−1 有n个结点,为什么只需要到n-1?因为假设有n个结点,最多需要n-1条边连起来。今天这个根据矩阵的运算来判断图的连通性,以前我只知道通过遍历图看图的连通性,今天从数学角度去思考图的连通性,有收获!再去读代码写代码就很好理解了(我觉得主要的逻辑代码就在getConnectivity方法中的step3中的这一个for循环中)。
package graph;
import matrix.IntMatrix;
public class Graph {
IntMatrix connectivityMatrix;
/**
* The first constructor.
* @param paraNumNodes The number of nodes in the graph.
*/
public Graph(int paraNumNodes){
connectivityMatrix = new IntMatrix(paraNumNodes, paraNumNodes);
}
/**
* The second constructor.
* @param paraMatrix The data matrix.
*/
public Graph(int[][] paraMatrix){
connectivityMatrix = new IntMatrix(paraMatrix);
}
@Override
public String toString(){
return "This is the connectivity matrix of the graph.\r\n" + connectivityMatrix;
}
/**
* Get the connectivity of the graph.
* @return
*/
public boolean getConnectivity() throws Exception {
// Step 1. Initialize accumulated matrix.
IntMatrix tempConnectivityMatrix = IntMatrix.getIdentityMatrix(connectivityMatrix.getData().length);
//Step 2. Initialize
IntMatrix tempMultipliedMatrix = new IntMatrix(connectivityMatrix);
//Step 3. Determine the actual connectivity.
for (int i = 0; i < connectivityMatrix.getData().length - 1; i++){
// M_a = M_a + M^k
tempConnectivityMatrix.add(tempMultipliedMatrix);
// M^k
tempMultipliedMatrix = IntMatrix.multiply(tempMultipliedMatrix, connectivityMatrix);
}
// Step 4. Check the connectivity.
System.out.println("The connectivity matrix is: " + tempConnectivityMatrix);
int[][] tempData = tempConnectivityMatrix.getData();
for (int i = 0; i < tempData.length; i++) {
for (int j = 0; j < tempData.length; j++){
if (tempData[i][j] == 0){
System.out.println("Node " + i + " cannot reach " + j);
return false;
}
}
}
return true;
}
/**
* Unit test for getConnectivity.
*/
public static void getConnectivityTest(){
int[][] tempMatrix = { { 0, 1, 0 }, { 1, 0, 1 }, { 0, 1, 0 } };
Graph tempGraph2 = new Graph(tempMatrix);
System.out.println(tempGraph2);
boolean tempConnected = false;
try {
tempConnected = tempGraph2.getConnectivity();
} catch (Exception ee) {
System.out.println(ee.getMessage());
}
System.out.println("Is the graph connected? " + tempConnected);
//Test a directed graph. Remove one arc to form a directed graph.
tempGraph2.connectivityMatrix.setValue(1, 0, 0);
tempConnected = false;
try {
tempConnected = tempGraph2.getConnectivity();
} catch (Exception ee) {
System.out.println(ee);
}
System.out.println("Is the graph connected? " + tempConnected);
}
public static void main(String[] args) {
System.out.println("Hello!");
Graph tempGraph = new Graph(3);
System.out.println(tempGraph);
// Unit test.
getConnectivityTest();
}
}