人工智能概述

news2025/1/17 18:00:13

在这里插入图片描述

一、人工智能发展必备三要素

  • 算法

  • 数据

  • 算力

    • CPU、GPU、TPU

    在这里插入图片描述

  • 计算力之CPU、GPU对比:

    • CPU主要适合I\O密集型任务
    • GPU主要适合计算密集型任务
  • 什么样的程序适合在GPU上运行?

    1. 计算密集型的程序

      所谓计算密集型(Compute-intensive)的程序,就是其大部分运行时间花在了寄存器运算上,寄存器的速度和处理器的速度相当,从寄存器读写数据几乎没有延时。可以做一下对比,读内存的延迟大概是几百个时钟周期;读硬盘的速度就不说了,即便是SSD,速度也特别慢。

    2. 易于并行的程序

      GPU其实是一种SIMD(Single Instruction Multiple Data)架构,它有成百上千个核,每一个核在同一时间最好能做同样的事情。

二、人工智能、机器学习和深度学习

在这里插入图片描述

  • 人工智能和机器学习,深度学习的关系
    1. 机器学习是人工智能的一个实现途径
    2. 深度学习是机器学习的一个方法(神经网络)发展而来

三、人工智能的发展历程

  • 第一是起步发展期:1956年~20世纪60年代初

    人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等。掀起了人工智能发展的第一个高潮,1956年也被称为人工智能元年。

  • 第二是反思发展期:20世纪60年代~70年代初

    ​人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具有挑战性的任务,并提出一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个函数之和还是连续函数等),使人工智能的发展走入低谷。

  • 第三是应用发展期:20世纪70年代初~80年代中

    ​20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

  • 第四是低迷发展期:20世纪80年代中~90年代中

    ​随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题 逐渐暴露出来。

  • 第五是稳步发展期:20世纪90年代中~2010年

    ​由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年IBM深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性时间。

  • 第六是蓬勃发展期:2011年至今

    ​随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用“到”可以用”的技术突破,迎来爆发式增长的新高潮。

    在这里插入图片描述

四、人工智能主要分支

  • 主要分支介绍

    ​ 通讯、感知与行动是现代人工智能的三个关键能力,在这里我们将根据这些能力/应用对这三个技术领域进行介绍:

    • 计算机视觉(CV)
    • 自然语言处理(NLP)
      • 在NLP领域中,将覆盖文本挖掘/分类、机器翻译和语音识别。
    • 机器人
  • 分支一:计算机视觉

    计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提出和图像的三维推理。物体检测和人脸识别是其比较成功的研究领域。

    当前阶段:

    计算机视觉现已有很多应用,这表明了这类技术的成就,也让我们将其归入到应用阶段。随着深度学习的发展,机器甚至能在特定的案例中实现超越人类的表现。但是,这项技术离社会影响阶段还有一定距离,那要等到机器能在所有场景中都达到人类的同等水平才行(感知其环境的所有相关方面)。

  • 分支二:语音识别

    语音识别是指识别语音(说出的语言)并将其转换成对应文本的技术。相反的任务(文本转语音/TTS)也是这一领域内一个类似的研究主题。

    当前阶段:

    语音识别已经处于应用阶段很长时间了。最近几年,随着大数据和深度学习技术的发展,语音识别进展颇丰,现在已经非常接近社会影响阶段了 。

  • 分支三:文本挖掘/分类

    这里的文本挖掘主要是指文本分类,该技术可用于理解、组织和分类结构化或非结构化文本文档。其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。

    当前阶段:

    我们将这项技术归类到应用阶段,因为现在有很多应用都已经集成了基于文本挖掘的情绪分析或垃圾信息检测技术。文本挖掘技术也在智能投顾的开发中有所应用,并且提升了用户体验。

    文本挖掘和分类领域的一个瓶颈出现在歧义和有偏差的数据上。

  • 分支四:机器翻译

    机器翻译(MT)是利用机器的力量自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)。

    当前阶段:

    机器翻译是一个见证了大量发展历程的应用领域。该领域最近由于神经机器翻译而取得了非常显著的进展,但仍然没有全面达到专业译者的水平;但是,我们相信在大数据、云计算和深度学习技术的帮助下,机器翻译很快就将进去社会影响阶段。

  • 分支五:机器人

    机器人学(Robotics)研究的是机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理。

    机器人可以分成两大类:固定机器人和移动机器人。固定机器人通常被用于工业生产(比如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。

    当前阶段:

    自上世纪【Robot】一词诞生以来,人们已经为工业制造业设计了很多机器人。工业机器人是增长最快的应用领域,它们在20世纪80年代将这一领域带入了应用阶段。在安川电机、Fanuc、ABB、库卡等公司的努力下,我们认为进入21世纪之后,机器人领域就已经进入了社会影响阶段,此时各种工业机器人已经主宰了装配生产线。此外,软体机器人在很多领域也有广泛的应用,比如在医疗行业协助手术或在金融行业自动执行承销过程。

    但是,法律法规和【机器人威胁论】可能会妨碍机器人领域的发展。还有设计和制造机器人需要相对较高的投资

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/415363.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【K8S系列】深入解析无状态服务

目录 序言 1. 无服务介绍 1.1 优点 1.2 使用场景 1.3 资源类型 1.4 总结 2 使用介绍 2.1 Deployment 使用场景: 2.2 ReplicaSet 使用场景 2.3 pod Pod 资源定义示例 2.4 service 创建一个Deployment: 创建一个Service: 总结…

前置知识——Linux网络虚拟化

Linux网络虚拟化 信息是如何通过网络传输被另一个程序接收到的? 我们讨论的虚拟化网络是狭义的,它指容器间网络。 好了,下面我们就从 Linux 下网络通信的协议栈模型,以及程序如何干涉在协议栈中流动的信息来开始了解吧。 Linux…

基于飞桨实现的特定领域知识图谱融合方案:ERNIE-Gram文本匹配算法

文本匹配任务在自然语言处理领域中是非常重要的基础任务,一般用于研究两段文本之间的关系。文本匹配任务存在很多应用场景,如信息检索、问答系统、智能对话、文本鉴别、智能推荐、文本数据去重、文本相似度计算、自然语言推理、问答系统、信息检索等&…

【MySQL】了解MySQL的Explain,读这一篇够了( ̄∇ ̄)/

目录 ID select_type 查询类型 table 表名 type 关联类型/访问类型 possible_keys MySQL觉得可能要用到的索引 key 实际用到的索引 key_len 用到的索引的长度(比如可用于判断使用了联合索引中的哪几个) ref 表查找值所用的列(表名.字…

Transformer在计算机视觉中的应用-VIT、TNT模型

上期介绍了Transformer的结构、特点和作用等方面的知识,回头看下来这一模型并不难,依旧是传统机器翻译模型中常见的seq2seq网络,里面加入了注意力机制,QKV矩阵的运算使得计算并行。 当然,最大的重点不是矩阵运算&…

行人车辆检测与计数系统(Python+YOLOv5深度学习模型+清新界面)

摘要:行人车辆检测与计数系统用于交通路口行人及车辆检测计数,道路人流量、车流量智能监测,方便记录、显示、查看和保存检测结果。本文详细介绍行人车辆检测,在介绍算法原理的同时,给出Python的实现代码、PyQt的UI界面…

【并发编程Python】一文详解Python并发编程,协程、线程、进程

并发编程简介和一些前缀知识 并发编程是使得程序大幅度提速的。在并发编程中,程序可以同一时间执行多个任务,这有助于提高程序的吞吐量和响应时间。并发编程设计的主要概念包括线程、锁、同步、信号量、进程间通信等。 前缀知识: IO&#x…

Linux中shell内外命令讲解(上)

♥️作者:小刘在C站 ♥️个人主页:小刘主页 ♥️每天分享云计算网络运维课堂笔记,努力不一定有收获,但一定会有收获加油!一起努力,共赴美好人生! ♥️夕阳下,是最美的绽放,树高千尺,落叶归根人生不易,人间真情 前言 本章Linuxshell讲解,感谢观看,干货满满。 目录…

在windows内使用virtualbox搭建安卓x86,以及所遇到的问题解决--2.virtualbox上安卓x86的配置

目录: 简要说明: 1.配置vesa驱动: 2.启用网络连接并配置adb: 3.增强性能的方法: 简要说明: 先进行说明一点个人直接通过vbox VMware这些软件,并不能超越专业的安卓模拟器,大部分模拟器实际…

使用Pytorch实现对比学习SimCLR 进行自监督预训练

SimCLR(Simple Framework for Contrastive Learning of Representations)是一种学习图像表示的自监督技术。 与传统的监督学习方法不同,SimCLR 不依赖标记数据来学习有用的表示。 它利用对比学习框架来学习一组有用的特征,这些特征…

【创作赢红包】Java Web 实战 18 - 计算机网络之网络层协议 and 数据链路层协议

文章目录网络层协议1. IP 协议1.1 报头结构1.2 IP 协议的地址管理动态分配 IP 地址 (DHCP)IP 地址转换 (NAT)IPv61.3 IP 地址的组成2. 路由选择数据链路层1. 以太网协议2. 以太网帧格式2.1 mac 地址2.2 两个特殊的以太网数据帧DNS 域名解析系统六 . 经典面试题 : 从浏览器中输入…

微信小程序 | 基于ChatGPT实现模拟面试小程序

Pre:效果预览 ① 选择职位进行面试 ② 根据岗位职责进行回答 一、需求背景 这两年IT互联网行业进入寒冬期,降本增效、互联网毕业、暂停校招岗位的招聘,各类裁员、缩招的情况层出不穷!对于这个市场来说,在经历了互联网…

小白学Pytorch系列--Torch API (7)

小白学Pytorch系列–Torch API (7) Comparison Ops allclose 此函数检查输入和其他是否满足条件: >>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08])) False >>> torch.allclose(torch.tensor([10000., 1e-…

MATLAB | 如何自然好看的从图片中提取颜色并制作色卡

在这里研究了一下各种排序算法,写一篇如何由图片一键生成颜色条的方法。 1 关于大量颜色排序 假设有大量颜色怎么对其进行排序呢,首先想到的最简单方法就是将其按照RGB值的大小进行排序,为了方便展示颜色条,这里编写了一个颜色条…

【Pytorch】 理解张量Tensor

本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052 这是目录张量Tensor是什么?张量的创建为什么要用张量Tensor呢?总结张量Tensor是什么? 在深度学习中,我们经常会遇到一个概念&#xff…

初探Redis整体架构

文章目录1、Redis为什么选择单线程2、逐步加入多线程3、Redis采用IO多路复用---epoll和Reactor架构4、Redis6/7默认是否开启了多线程?1、Redis为什么选择单线程 这种问法其实并不严谨,为啥这么说呢? Redis几个里程碑式的重要版本 理清一个事实&#…

一文带你安装opencv和常用库(保姆级教程少走80%的弯路)

0.导语 离上一个opencv安装保姆级教程发布已经过去了快一年了,这一年来我收到了来自很多C友的鼓励。打算学opencv的各位朋友都会在安装opencv和各种库过程中浪费掉60%的时间和精力;博主在这一年来尝试各种各样的安装方法,全网搜集各种资料总…

[ 云计算 | Azure ] Chapter 05 | 核心体系结构之管理组、订阅、资源和资源组以及层次关系

本文主要对如下内容进行讲解:Azure云计算的核心体系结构组件中的:资源、订阅和资源组,以及了解 Azure 资源管理器 (ARM) 如何部署资源。 本系列已经更新文章列表: [ 云计算 | Azure ] Chapter 03 | 描述云计算运营中的 CapEx 与…

元宇宙与网络安全

元宇宙是一种虚拟现实空间,用户可以在计算机生成的环境中进行互动。元宇宙的应用范围很广,比如房地产,医疗,教育,军事,游戏等等。它提供了更具沉浸感的体验,更好地现实生活整合,以及…

图像分类算法:ResNet论文解读

图像分类算法:ResNet论文解读 前言 ​ 其实网上已经有很多很好的解读各种论文的文章了,但是我决定自己也写一写,当然,我的主要目的就是帮助自己梳理、深入理解论文,因为写文章,你必须把你所写的东西表达清楚…