NLP与ChatGPT的碰撞:大模型和小模型联合发力

news2025/1/18 6:45:28

ChatGPT真的太火了!作为NLP的终结者,ChatGPT又会与NLP发生怎么样的碰撞?大模型可以替代小模型吗?NLP又将何去何从?今天给大家推荐一本好书:《基于NLP的内容理解》!

文章目录

  • 一、背景
  • 二、书籍介绍
  • 三、作者介绍
  • 四、延伸阅读
  • 五、与ChatGPT对话
    • 问题一:你觉得NLP未来的发展趋势是什么?
    • 问题二:小模型未来会被大模型取代吗?
    • 问题三:NLP与ChatGPT会发生怎么样的碰撞?

一、背景

随着人工智能的蓬勃发展,大量应用场景中都会涉及到文本内容的理解技术。由于场景的不同,目前文本内容理解没有统一的模板,解决起来并不容易。在市场上有各种各样的机器学习、深度学习、自然语言处理等资料,但是都没有与业务场景紧密地联系起来,即使有联系也很笼统,并没有涉及实际业务场景中非常琐碎的细节问题。

而只有把这些细节问题解决好,才能更好地发展业务。同时,市面上从问题的角度讲解算法等相关知识的书很少,而在业务场景中更多的是通过简单且匹配的技术解决业务问题。所以,让大家看到如何从问题的角度进行问题的拆解,然后通过匹配的技术解决业务问题是很重要的事情。

自然语言处理的目的是为了让计算机能够理解人类的语言,但是由于语言具有高度抽象性、歧义性等特点,给文本理解增加了很大的难度。ChatGPT模型近年来非常火爆,具备非常有潜力的商业价值,可以和非常多的业务场景融合,产生新的体验,甚至颠覆原有的方式方法。大模型非常的劲爆,但是在模型部署、资源损耗、数据标注等方面面临非常大的挑战。例如:

  1. 模型大小:预训练模型通常非常庞大。GPT-3 等模型包含上千亿个参数,因此在部署时可能会面临存储和传输上的困难。
  2. 推理速度:模型推理速度是评估一个机器学习模型性能的重要指标之一。在实际应用中,模型的推理速度往往直接影响着用户的体验和系统的效率。高效的模型推理速度可以缩短处理时间,提高用户满意度,减少计算资源的浪费。
  3. 计算资源:预训练模型需要大量的计算资源来进行推理,这可能会导致部署时的计算瓶颈和性能问题。
  4. 硬件兼容性:预训练模型的部署需要适应多种不同的硬件平台,包括 CPU、GPU、ASIC 等,因此需要适配和优化。
  5. 版本管理:预训练模型可能会不断更新和改进,因此在部署时需要考虑版本管理和更新的问题。

二、书籍介绍

因此,大模型和小模型联合发力仍然是目前的最佳选择。《基于NLP内容理解》这本书旨在从文本语言理解的角度入手,详细介绍了文本特征表征、内容重复理解、通顺度识别、内容质量、用户画像、文本摘要及文本纠错等。本书采用以应用贯串始终的方式进行相关技术的介绍和说明。

在这里插入图片描述

具体来说,本书主要从以下几个方面介绍自然语言处理中相关的技术及其应用。


1)文本特征表示方法:本章详细介绍了文本特征的表示方法包括离散型表示方法和分布型表示方法以及词向量的评判标准。

2)内容重复理解:主要从应用的角度介绍了标题、段落和文章重复三种场景以及三种场景的具体实现。

3)内容通顺度识别:介绍了数据增强的几种方法,句子通顺度识别方法以及内容不通顺时的几种纠正方式。

4)内容质量:内容质量在很多场景中都是非常重要的,因此,从应用的角度详细介绍了知识问答质量体系的搭建方法,方便大家后续在业务实践中快速的使用起来。

5)用户画像:本章主要讲述了用户画像中标签体系的整个建设流程。

6)自动文本摘要生成:介绍了文本摘要生成中流行的两类方法,包括抽取式文本摘要和生成式文本摘要;此外还介绍了文本摘要的几种常用数据集以及文本摘要的评价方法。

7)文本纠错:介绍了文本中错误的类型、来源,文本纠错常用的方法与框架,并介绍了常用的文本纠错工具的安装以及使用方法。

可以看到本书中详细介绍了大量的使用场景,大家可以通过这些场景选择使用什么样的算法以及如何通过策略达到更好的业务效果。模型更多的是解决业务问题,而不是独立存在的。通过本书的学习可以更好的理解大模型的底层原理,因为本书中详细介绍了大模型的底层算法,通过这些知识的学习可以更容易理解大模型的构建。本书中使用了很多小模型可以快速的解决问题,这些小模型可以和大模型联动,将大模型压缩成小模型或者使用数据蒸馏技术,解决模型部署和响应速度等多方面问题。

三、作者介绍

本文作者:李明琦 资深AI技术专家,现就职于BAT,担任高级算法工程师,《基于NLP的内容理解》作者。长期致力于机器学习、深度学习、NLP等技术在实际业务场景中的落地,在内容理解方面有丰富的经验,主导的内容质量项目曾获得最佳项目奖。先后发表人工智能相关的学术论文2篇,申请人工智能领域的发明专利5项。在GitHub上贡献了大量内容质量、问答系统、NLP等方面的代码,在CSDN撰写了一些与算法、机器学习、内容理解相关的文章,深受欢迎。

四、延伸阅读

《基于NLP的内容理解》李明琦,谷雪,孟子尧 著
在这里插入图片描述

推荐语:BAT高级AI专家撰写,解密大模型底层技术,结合实际业务场景,6个维度讲解如何用NLP算法解决内容理解的各种难题,以应用贯穿全书,包含大量案例。

五、与ChatGPT对话

问题一:你觉得NLP未来的发展趋势是什么?

作为机器学习的一个方向,自然语言处理(NLP)在过去几年里得到了广泛的关注。未来,它将会继续发展,但是更加聚焦于以下几个方面:

1. 更好的语音识别和语音生成技术:语音技术将越来越重要,因为人们更多地希望使用语音来与机器交互。未来的发展趋势是更强大、更准确的语音识别和合成技术。

2. 深度学习和神经网络的应用:深度学习和神经网络技术在NLP领域中已有了很多成功的应用,未来这些技术会继续被广泛使用,并且将有更多的研究探索神经机器翻译等领域。

3. 更智能的对话系统:对话系统是语音交互最重要的应用场景之一,未来将会更多地关注如何让对话系统更加智能和自然。

4. 多语言处理:跨语言交互的应用日益增多,为了满足人们对多语言的需求,未来的发展趋势是构建更强大的多语言NLP模型。

5. 结合知识图谱的语义理解:NLP系统需要理解语言的语义,而知识图谱中的丰富知识可以帮助系统更好地理解语言,未来会更多地将知识图谱与NLP结合起来。

总之,NLP领域在未来将继续快速发展,人们期待着更优秀、更智能的NLP应用。

问题二:小模型未来会被大模型取代吗?

未来可能会存在更大和更复杂的模型,但是小模型在某些情况下可能仍然有其优势。例如,在计算能力和资源有限的设备或环境中,较小的模型可以更有效地工作。此外,一些任务可能只需要相对简单的模型就能够获得良好的结果,而不需要投入更大的计算和时间资源来训练更大的模型。

因此,虽然未来可能会有更大和更复杂的模型涌现,但在某些情况下,小模型仍然会有其存在的必要性。

问题三:NLP与ChatGPT会发生怎么样的碰撞?

NLP和ChatGPT都是自然语言处理领域的重要技术,它们可以相互碰撞,产生以下影响:

1. 提高对话机器人的能力:ChatGPT是一种生成式对话模型,可以生成与人类自然语言相似的对话内容。通过与NLP技术结合,可以实现更加智能化、自然化的对话机器人。

2. 加强对话情境的理解:NLP技术可以帮助ChatGPT更好的理解对话中的语境、意图等信息。这样可以更好地判断用户的意图,并提供更加准确的回答。

3. 提高对话质量:NLP技术可以帮助ChatGPT更加准确地理解用户的问题,并提供更加准确、周全的答案。这可以提高对话机器人的质量,也可以提高用户的满意度。

4. 优化对话生成过程:通过NLP技术提取对话中的关键信息和上下文,可以帮助ChatGPT更好地生成对话内容,并避免一些不合适的回答。

总之,NLP与ChatGPT的碰撞可以使对话机器人更加智能化、自然化,并提高对话的质量与用户的满意度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/415191.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【原创】AIGC之ChatGPT工作原理

AIGC是什么 AIGC - AI Generated Content (AI生成内容),对应我们的过去的主要是 UGC(User Generated Content)和 PGC(Professional user Generated Content)。 AIGC就是说所有输出内容是通过AI机…

2023年3月的10篇论文推荐

三月有很多的重大产品发布,包括刚刚发布的GPT4,还有Meta刚发布就被泄露的LLaMA,midjourney V5,还有ChatGPT的API(非常便宜)等等。 但是本文整理的是本月应该阅读的10篇论文,将包括多模态语言模…

Linux中shell内外命令讲解(下)

♥️作者:小刘在C站 ♥️个人主页:小刘主页 ♥️每天分享云计算网络运维课堂笔记,努力不一定有收获,但一定会有收获加油!一起努力,共赴美好人生! ♥️夕阳下,是最美的绽放&#xff0…

MySQL数据库:联合查询、子句查询、合并查询

一、联合查询 1.概念 简单理解就是将多张表合并到一起,然后进行数据查询,所有也叫多表联查。 如何将两张表合并到一起? 取两张表的笛卡儿积:将表1中的数据逐条与表2中的数据进行合并,最终形成的新的临时表&#xff0…

py征途4之无效思路

事件回顾: 近期班里组织了一个跑团,使用的是keep跑团助手(小程序)。每个人都有一个昵称,要对“每日跑量”进行统计,以明确到底有哪些人跑了步,哪些人没跑步。 为了解决这个问题,从3月…

springboot登录校验[JWT]

前言: 👏作者简介:我是笑霸final,一名热爱技术的在校学生。 📝个人主页:个人主页1 || 笑霸final的主页2 📕系列专栏:后端专栏 📧如果文章知识点有错误的地方,…

Spring Transaction 源码解读

Spring Transaction 规范的maven坐标如下&#xff1a; <dependency><groupId>org.springframework</groupId><artifactId>spring-tx</artifactId><version>...</version></dependency>该包提供了spring事务规范和默认的jta(ja…

【SSM】SSM整合步骤和流程细化

整合SSM参考文献一、SSM整合前概述1. 各个框架在三层架构模式中所担任的角色2. 两个IOC容器的创建1&#xff09;整合时Spring中IOC容器的创建时间2&#xff09;Spring提供的监听器&#xff08;ContextLoaderListener&#xff09;二、SSM整合步骤参考文献 卤蛋的SSM整合完整流程…

华为nat配置实验:内网能够访问外网,内网服务器80端口映射出去

一 需求分析1.1 需求公司A在北京&#xff0c;公司B在上海&#xff0c;本次实验仅仅模拟局域网内出口路由器的配置&#xff0c;公司A业务流量较大&#xff0c;并且预算有限。公司B模拟外网的一个小型局域网&#xff0c;要求公司B的主机能够访问公司A的web服务器。1.2 分析采用na…

Linux中滴计划任务

计划任务计划任务计划任务分类at命令load averagecrontab命令配置文件通常包含三个部分cron服务配置文件cron服务的日志文件时间数值的特殊表示方法应用实例案例anacron服务计划任务 计划任务&#xff08;Cron Job&#xff09;是指在预定的时间自动执行一些指定的任务或脚本。…

Pytorch使用预训练好的卷积神经网络进行推理预测

本小节将会介绍如何利用已经预训练好的卷积神经网络模型对一张图像进行预测&#xff0c;并且通过可视化的方法&#xff0c;查看模型是如何得到其预测结果的。 我们直接看一个实例&#xff0c;利用已经预训练好的VGG16卷积神经网络对一张图像获取一些特定层的输出&#xff0c;并…

通过python理解光的偏振

文章目录基本原理椭圆偏振光基本原理 光是横波&#xff0c;可以写成E⃗A⃗cos(ωt−k⃗r⃗)\vec E \vec{A}cos(\omega t-\vec k\vec r)EAcos(ωt−kr)&#xff0c;振动方向与传播方向垂直&#xff0c;而在三维空间中&#xff0c;与光线垂直的乃是法平面。换言之&#xff0c;光…

【Minecraft开服】Windows搭建我的世界MC服务器「公网远程联机」

文章目录1. Java环境搭建2.安装我的世界Minecraft服务3. 启动我的世界服务4.局域网测试连接我的世界服务器5. 安装cpolar内网穿透6. 创建隧道映射内网端口7. 测试公网远程联机8. 配置固定TCP端口地址8.1 保留一个固定tcp地址8.2 配置固定tcp地址9. 使用固定公网地址远程联机简单…

【计算机网络-网络层】IPv4 和 IPv6

文章目录第一部分&#xff1a;IPv4&#xff08;IP 协议版本 4&#xff09;1 IP 数据报1.1 IP 数据报格式1.2 相关例题2 分类编址&#xff08;两级结构&#xff0c;网络号定长&#xff09;2.1 IP 地址的表示方法2.2 IP 分类编址2.3 IP 地址的特殊用途3 无分类编址 CIDR&#xff…

PyTorch 之 神经网络 Mnist 分类任务

文章目录一、Mnist 分类任务简介二、Mnist 数据集的读取三、 Mnist 分类任务实现1. 标签和简单网络架构2. 具体代码实现四、使用 TensorDataset 和 DataLoader 简化本文参加新星计划人工智能(Pytorch)赛道&#xff1a;https://bbs.csdn.net/topics/613989052 一、Mnist 分类任…

recyclerview中树状结构的实现,加载本地中文件夹信息

引文&#xff1a; 在项目实现中&#xff0c;对于树状图结构的分析一直无法实现正确的效果&#xff0c;结果查看别人的项目都不要适合我的应用场景&#xff0c;但是查看其实原理是差不多的&#xff0c;但是我没有看明白&#xff0c;所以一直在看这方面的东西。查阅并修改他人的代…

ADSP21489之CCES开发笔记(九)

21489评估板调试SigmaStudio&#xff0c;录音&#xff0c;算法效果对比等等&#xff0c;依此写上该文章&#xff0c;以便有兴趣的朋友参考之用。 一、硬件链路图 二、导入21489Demo程序 2.1、Demo路径&#xff1a;2.2、导入ADI的21489的Demo程序 修改相关代码 oCommConfig.n…

小白学Pytorch系列--Torch.optim API Base class(1)

小白学Pytorch系列–Torch.optim API Base class(1) torch.optim是一个实现各种优化算法的包。大多数常用的方法都已得到支持&#xff0c;而且接口足够通用&#xff0c;因此将来还可以轻松集成更复杂的方法。 如何使用优化器 使用手torch.optim您必须构造一个优化器对象&…

下载和阅读Android源码

目录一、如何下载AOSP1.全量下载2.单个下载目录结构二、如何阅读AOSP1.要阅读哪些源码2.阅读源码的顺序和方式2.1 阅读顺序2.2 阅读方式3.用什么工具来阅读3.1 下载安装Source Insight3.2 导入AOSP源码3.3查看源码三、其他一、如何下载AOSP 源码下载是我们分析源码的开始&…

ctfshow愚人杯web复现

easy_signin 题目url base64解码是face.png&#xff0c;尝试flag.txt和flag.php&#xff0c;base64加密后传入都不对&#xff0c;用index.php加密后传入&#xff0c;看源码 将后面的base64解密得到flag 被遗忘的反序列化 源码 <?php# 当前目录中有一个txt文件哦 error_r…