STM-32:串口收发数据包—串口收发HEX数据包/串口收发文本数据包

news2025/2/24 6:06:41

目录

  • 一、发送HEX数据包
    • 1.1固定包长,含包头包尾(包尾不是必须的)
    • 1.2可变包长,含包头包尾
  • 二、接收HEX数据包
  • 三、发送文本数据包
    • 3.1固定包长,含包头包尾
    • 3.2可变包长,含包头包尾
  • 四、接收文本数据包
  • 五、HEX数据包和文本数据包的比较
  • 六、程序用例
    • 6.1串口收发HEX数据包
      • 6.1.1接线图
      • 6.1.2程序代码
    • 6.2串口收发文本数据包
      • 6.21.1接线图
      • 6.2.2程序代码

一、发送HEX数据包

1.1固定包长,含包头包尾(包尾不是必须的)

在这里插入图片描述

1.2可变包长,含包头包尾

在这里插入图片描述
1、包头包尾和数据载荷重复的问题,传输的数据本身是FF和FE,可能引起误判
解决:限制载荷数据的范围,限幅(例如只发送0~100)
如果无法避免数据于包头包尾重复,则尽量使用固定长度的数据包
增加包头包尾的数量,尽量是其呈现出载荷数据出现不了的状态
2、包头包尾并不是全部都需要的,例如可以只要一个包头
3、固定包长和可变包长的选择问题
(1)对HEX来说,若载荷出现和包头包尾重复的情况,最好选择固定包长,避免接受错误
(2)若不重复,可以选择可变包长
4、各种数据转化为数据流的问题
数据包都是一个字节一个字节组成的,若想发送16位整型数据、32位整型数据,float、double、甚至是结构体(其内部都是由一个字节一个字节组成的),只需要用一个uint8_t的指针指向它,把数据当作字节数组发送即可

二、接收HEX数据包

在这里插入图片描述
每收到一个字节,函数都会进入一次中断,在中断函数中,可以拿到一个字节,但拿到字节之后,就得退出中断,故每拿到一个数据,都是一个独立的过程,而对数据包来说,有数据、包头、包尾三种状态,根据状态不同处理也不同。

三、发送文本数据包

3.1固定包长,含包头包尾

在这里插入图片描述

3.2可变包长,含包头包尾

在这里插入图片描述

四、接收文本数据包

在这里插入图片描述

五、HEX数据包和文本数据包的比较

(1)在hex数据包中,数据都是以原始的字节数据本身呈现的

(2)在文本数据包中,每个字节就经过一层编码和译码,最终表现出文本格式(文本背后还是一个字节的HEX数据)

(3)hex数据包:传输直接、解析数据简单,适合一些模块发送原始的数据,比如一些使用串口通信的陀螺仪、温湿度传感器,但是灵活性不足、载荷容易和包头包尾重复

(4)文本数据包:数据直观易理解、灵活,适合一些输入指令进行人机交互,但解析效率低.

(5)发送100,hex直接发送一个字节100,而文本发送三个字节’1’,‘0’.‘0’,收到之后还要把字符转换程数据,才能得到100。

六、程序用例

6.1串口收发HEX数据包

6.1.1接线图

在这里插入图片描述

6.1.2程序代码

Serial.c

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>

uint8_t Serial_TxPacket[4];				//FF 01 02 03 04 FE
uint8_t Serial_RxPacket[4];
uint8_t Serial_RxFlag;

void Serial_Init(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	USART_InitTypeDef USART_InitStructure;
	USART_InitStructure.USART_BaudRate = 9600;
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
	USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
	USART_InitStructure.USART_Parity = USART_Parity_No;
	USART_InitStructure.USART_StopBits = USART_StopBits_1;
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;
	USART_Init(USART1, &USART_InitStructure);
	
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
	
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
	
	NVIC_InitTypeDef NVIC_InitStructure;
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
	NVIC_Init(&NVIC_InitStructure);
	
	USART_Cmd(USART1, ENABLE);
}

void Serial_SendByte(uint8_t Byte)
{
	USART_SendData(USART1, Byte);
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
}

void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
	uint16_t i;
	for (i = 0; i < Length; i ++)
	{
		Serial_SendByte(Array[i]);
	}
}

void Serial_SendString(char *String)
{
	uint8_t i;
	for (i = 0; String[i] != '\0'; i ++)
	{
		Serial_SendByte(String[i]);
	}
}

uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
	uint32_t Result = 1;
	while (Y --)
	{
		Result *= X;
	}
	return Result;
}

void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
	uint8_t i;
	for (i = 0; i < Length; i ++)
	{
		Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');
	}
}

int fputc(int ch, FILE *f)
{
	Serial_SendByte(ch);
	return ch;
}

void Serial_Printf(char *format, ...)
{
	char String[100];
	va_list arg;
	va_start(arg, format);
	vsprintf(String, format, arg);
	va_end(arg);
	Serial_SendString(String);
}


void Serial_SendPacket(void)
{
	Serial_SendByte(0xFF);
	Serial_SendArray(Serial_TxPacket, 4);
	Serial_SendByte(0xFE);
}

uint8_t Serial_GetRxFlag(void)
{
	if (Serial_RxFlag == 1)
	{
		Serial_RxFlag = 0;
		return 1;
	}
	return 0;
}

void USART1_IRQHandler(void)
{
	static uint8_t RxState = 0;
	static uint8_t pRxPacket = 0;
	if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET)
	{
		uint8_t RxData = USART_ReceiveData(USART1);
		
		if (RxState == 0)
		{
			if (RxData == 0xFF)
			{
				RxState = 1;
				pRxPacket = 0;
			}
		}
		else if (RxState == 1)
		{
			Serial_RxPacket[pRxPacket] = RxData;
			pRxPacket ++;
			if (pRxPacket >= 4)
			{
				RxState = 2;
			}
		}
		else if (RxState == 2)
		{
			if (RxData == 0xFE)
			{
				RxState = 0;
				Serial_RxFlag = 1;
			}
		}
		
		USART_ClearITPendingBit(USART1, USART_IT_RXNE);
	}
}

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"
#include "Key.h"

uint8_t KeyNum;

int main(void)
{
	OLED_Init();
	Key_Init();
	Serial_Init();
	
	OLED_ShowString(1, 1, "TxPacket");
	OLED_ShowString(3, 1, "RxPacket");
	
	Serial_TxPacket[0] = 0x01;
	Serial_TxPacket[1] = 0x02;
	Serial_TxPacket[2] = 0x03;
	Serial_TxPacket[3] = 0x04;
	
	while (1)
	{
		KeyNum = Key_GetNum();
		if (KeyNum == 1)
		{
			Serial_TxPacket[0] ++;
			Serial_TxPacket[1] ++;
			Serial_TxPacket[2] ++;
			Serial_TxPacket[3] ++;
			
			Serial_SendPacket();
			
			OLED_ShowHexNum(2, 1, Serial_TxPacket[0], 2);
			OLED_ShowHexNum(2, 4, Serial_TxPacket[1], 2);
			OLED_ShowHexNum(2, 7, Serial_TxPacket[2], 2);
			OLED_ShowHexNum(2, 10, Serial_TxPacket[3], 2);
		}
		
		if (Serial_GetRxFlag() == 1)
		{
			OLED_ShowHexNum(4, 1, Serial_RxPacket[0], 2);
			OLED_ShowHexNum(4, 4, Serial_RxPacket[1], 2);
			OLED_ShowHexNum(4, 7, Serial_RxPacket[2], 2);
			OLED_ShowHexNum(4, 10, Serial_RxPacket[3], 2);
		}
	}
}

6.2串口收发文本数据包

6.21.1接线图

在这里插入图片描述

6.2.2程序代码

Serial.c

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>

char Serial_RxPacket[100];				//"@MSG\r\n"
uint8_t Serial_RxFlag;

void Serial_Init(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	USART_InitTypeDef USART_InitStructure;
	USART_InitStructure.USART_BaudRate = 9600;
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
	USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
	USART_InitStructure.USART_Parity = USART_Parity_No;
	USART_InitStructure.USART_StopBits = USART_StopBits_1;
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;
	USART_Init(USART1, &USART_InitStructure);
	
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
	
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
	
	NVIC_InitTypeDef NVIC_InitStructure;
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
	NVIC_Init(&NVIC_InitStructure);
	
	USART_Cmd(USART1, ENABLE);
}

void Serial_SendByte(uint8_t Byte)
{
	USART_SendData(USART1, Byte);
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
}

void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
	uint16_t i;
	for (i = 0; i < Length; i ++)
	{
		Serial_SendByte(Array[i]);
	}
}

void Serial_SendString(char *String)
{
	uint8_t i;
	for (i = 0; String[i] != '\0'; i ++)
	{
		Serial_SendByte(String[i]);
	}
}

uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
	uint32_t Result = 1;
	while (Y --)
	{
		Result *= X;
	}
	return Result;
}

void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
	uint8_t i;
	for (i = 0; i < Length; i ++)
	{
		Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');
	}
}

int fputc(int ch, FILE *f)
{
	Serial_SendByte(ch);
	return ch;
}

void Serial_Printf(char *format, ...)
{
	char String[100];
	va_list arg;
	va_start(arg, format);
	vsprintf(String, format, arg);
	va_end(arg);
	Serial_SendString(String);
}

void USART1_IRQHandler(void)
{
	static uint8_t RxState = 0;
	static uint8_t pRxPacket = 0;
	if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET)
	{
		uint8_t RxData = USART_ReceiveData(USART1);
		
		if (RxState == 0)
		{
			if (RxData == '@' && Serial_RxFlag == 0)
			{
				RxState = 1;
				pRxPacket = 0;
			}
		}
		else if (RxState == 1)
		{
			if (RxData == '\r')
			{
				RxState = 2;
			}
			else
			{
				Serial_RxPacket[pRxPacket] = RxData;
				pRxPacket ++;
			}
		}
		else if (RxState == 2)
		{
			if (RxData == '\n')
			{
				RxState = 0;
				Serial_RxPacket[pRxPacket] = '\0';
				Serial_RxFlag = 1;
			}
		}
		
		USART_ClearITPendingBit(USART1, USART_IT_RXNE);
	}
}

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"
#include "LED.h"
#include "string.h"

int main(void)
{
	OLED_Init();
	LED_Init();
	Serial_Init();
	
	OLED_ShowString(1, 1, "TxPacket");
	OLED_ShowString(3, 1, "RxPacket");
	
	while (1)
	{
		if (Serial_RxFlag == 1)
		{
			OLED_ShowString(4, 1, "                ");
			OLED_ShowString(4, 1, Serial_RxPacket);
			
			if (strcmp(Serial_RxPacket, "LED_ON") == 0)
			{
				LED1_ON();
				Serial_SendString("LED_ON_OK\r\n");
				OLED_ShowString(2, 1, "                ");
				OLED_ShowString(2, 1, "LED_ON_OK");
			}
			else if (strcmp(Serial_RxPacket, "LED_OFF") == 0)
			{
				LED1_OFF();
				Serial_SendString("LED_OFF_OK\r\n");
				OLED_ShowString(2, 1, "                ");
				OLED_ShowString(2, 1, "LED_OFF_OK");
			}
			else
			{
				Serial_SendString("ERROR_COMMAND\r\n");
				OLED_ShowString(2, 1, "                ");
				OLED_ShowString(2, 1, "ERROR_COMMAND");
			}
			
			Serial_RxFlag = 0;
		}
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/413356.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

73-Linux_线程安全

线程安全一.什么是线程安全二.strtok和strtok_r1.strtok2.strtok_r三.多线程中执行fork1.多线程中某个线程调用 fork()&#xff0c;子进程会有和父进程相同数量的线程吗&#xff1f;2.父进程被加锁的互斥锁 fork 后在子进程中是否已经加锁 ?一.什么是线程安全 线程安全即就是…

【数据结构】时间复杂度详解

首先我们要知道学习数据结构时都会讨论到算法&#xff0c;数据结构中的问题多数都有算法解决&#xff0c;两者是你中有我&#xff0c;我中有你的关系&#xff0c;所以在数据结构中的学习中算法也是必不可少的。 为方便阅读&#xff0c;以下为本片目录 目录 1.算法效率 1.1 …

JavaScript的学习理解

文章目录一、JavaScript 对象二、JavaScript 函数三、JavaScript 作用域总结一、JavaScript 对象 JavaScript 对象是拥有属性和方法的数据。 真实生活中的对象&#xff0c;属性和方法 在 JavaScript中&#xff0c;几乎所有的事物都是对象。 在 JavaScript 中&#xff0c;对象…

Spring5学习笔记01

一、课程介绍 Spring是什么呢&#xff1f; 它是一个轻量级的、开源的JavaEE框架&#xff0c;它的出现是为了解决企业繁琐的开发包括复杂代码&#xff0c;它可以用很优雅、很简洁的方式进行实现&#xff0c;也就是说它为了简化企业开发而生&#xff0c;而它在目前的企业中应用…

大规模MySQL运维陷阱之基于MyCat的伪分布式架构

引子 分布式数据库&#xff0c;已经进入了全面快速发展阶段&#xff0c;这种发展&#xff0c;是与时俱进的&#xff0c;与人的需求是分不开的&#xff0c;因为现在信息时代的高速发展&#xff0c;导致数据量和交易量越来越大。这种现象首先导致的就是存储瓶颈&#xff0c;因为…

(排序10)归并排序的外排序应用(文件排序)

TIPS 在一些文件操作函数当中&#xff0c;fputc与fgetc这两个函数都是针对字符的&#xff0c;如果说你需要往文件里面去放入整形啊等等&#xff0c;不是字符的类型&#xff0c;这时候就用fprintf&#xff0c;fscanf在参数里面数据类型控制一下就可以。但是话说回来&#xff0c…

自动化测试怎么学?这绝对是全网最系统的教程

目录 1、什么是自动化测试 2、自动化测试的发展前景怎么样 3、自动化测试难不难&#xff1f; 4、目前市场上自动化测试岗位的薪资是多少&#xff1f; 5、自动化测试学习方法好渠道 6、自动化测试怎么学&#xff1f; 学习基础知识 选择自动化测试框架 开始编写测试脚本 …

用HTTP proxy module配置一个反向代理服务器

反向代理与正向代理 摘抄&#xff1a;https://cloud.tencent.com/developer/article/1418457 正向代理 正向代理&#xff08;forward proxy&#xff09;&#xff1a;是一个位于客户端和目标服务器之间的服务器(代理服务器)&#xff0c;为了从目标服务器取得内容&#xff0c;…

“数实融合 元力觉醒”,苏州市元宇宙生态大会圆满召开!

为贯彻落实《苏州市培育元宇宙产业创新发展指导意见》&#xff0c;抢抓数字经济发展新机遇&#xff0c;加速培育与元宇宙发展相关的技术底座&#xff0c;“数实融合 元力觉醒——苏州市软件行业协会元宇宙专委会成立大会暨元宇宙生态大会”于4月14日成功举办。 苏州和数智能软件…

五金件装备不良、视觉检测零件是否缺失硬件方案

【检测目的】 检测不良品 【检测要求】 检测速度&#xff1a;13S一个 【拍摄效果图一】&#xff08;正面&#xff09; 【拍摄效果图二】正面 【拍摄效果图三】正面 【拍摄效果图四】&#xff08;正面&#xff09; 【拍摄效果图五】&#xff08;正面&#xff09; 【拍摄效果图…

如何写好付费专栏之开宗明义篇

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。 本文主要介绍了写好付费专栏的开宗明义篇,希…

电脑上删除的文件可以恢复吗 如何恢复电脑上删除的文件

电脑早已走进千家万户&#xff0c;成为我们不可或缺的家庭设备&#xff0c;我们用电脑来学习、工作&#xff0c;处理各种数据。在使用电脑处理数据时&#xff0c;可能会失误操作&#xff0c;删除重要文件。那么&#xff0c;电脑上删除的文件可以恢复吗&#xff0c;如何恢复电脑…

Python学习笔记--函数进阶

&#xff08;一&#xff09; 函数多返回值 按照返回值的顺序&#xff0c;写对顺序的多个变量接收即可变量之间用逗号隔开支持不同类型的数据return def test_return():return 1,2x,y test_return() print(x) print(y)&#xff08;二&#xff09; 函数的多种传参方式 函数参数…

MySQL批量更新的常用实践

MySQL批量更新的常用实践 批量更新一般在批处理系统或者定时任务中比较常见&#xff0c;常见的诉求就是对表中多条数据进行更新&#xff08;待更新的值是不一样的&#xff0c;这个区别于update … where in(…)&#xff09; 1.利用case … when … 方式批量更新 特点&#x…

5年碌碌无为,我终于从功能测试转到了自动化测试,薪资暴涨8K......

目录&#xff1a;导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09;前言 自动化测试现已悄然…

JavaEE企业级应用开发教程——第十二章 Spring MVC数据绑定和相应(黑马程序员第二版)(SSM)

第十二章 Spring MVC数据绑定和相应 12.1 数据绑定 在 Spring MVC 中&#xff0c;当接收到客户端的请求时&#xff0c;会根据请求参数和请求头等信息&#xff0c;将参数以特定的方式转换并绑定到处理器的形参中&#xff0c;这个过程称为数据绑定。数据绑定的流程大致如下&…

Golang每日一练(leetDay0035) 二叉树专题(4)

目录 103. 二叉树的锯齿形层序遍历 Binary Tree Zigzag Level Order Traversal &#x1f31f;&#x1f31f; 104. 二叉树的最大深度 Maximum Depth of Binary-tree] &#x1f31f; 105. 从前序与中序遍历序列构造二叉树 Construct-binary-tree-from-preorder-and-inorder-…

MySQL8.0的安装和配置

&#x1f389;&#x1f389;&#x1f389;点进来你就是我的人了 博主主页&#xff1a;&#x1f648;&#x1f648;&#x1f648;戳一戳,欢迎大佬指点!人生格言&#xff1a;当你的才华撑不起你的野心的时候,你就应该静下心来学习! 欢迎志同道合的朋友一起加油喔&#x1f9be;&am…

结合实际谈谈个人对代码优化的感想以及java优化

前言 本来想写一篇结合在实际工作中&#xff0c;自己去优化java代码的文章&#xff0c;用于记录便于复习提升自己的&#xff1b;但是在回想起自己在实际工作中诸多因素导致存在的问题&#xff08;仅针对我个人&#xff09;&#xff0c;个人总结以及去证实了&#xff0c;所悟&am…

16. unity粒子特效---旋转 + 花瓣飞舞案例

1. 旋转模块&#xff08;Rotation over Lifetime&#xff09; 在主模块中也可以设置粒子的旋转角度&#xff0c;通过参数Start Rotation&#xff0c;不过这个参数设置的是粒子刚生成时的角度&#xff0c;后面不会发生变化。 使用旋转模块可以通过参数Angular Velocity进行设置…