深度学习TensorFlow

news2024/10/6 4:02:04

 博主简介

博主是一名大二学生,主攻人工智能研究。感谢让我们在CSDN相遇,博主致力于在这里分享关于人工智能,c++,Python,爬虫等方面知识的分享。 如果有需要的小伙伴可以关注博主,博主会继续更新的,如果有错误之处,大家可以指正。

专栏简介:   本专栏主要研究计算机视觉,涉及算法,案例实践,网络模型等知识。包括一些常用的数据处理算法,也会介绍很多的Python第三方库。如果需要,点击这里订阅专栏   。

给大家分享一个我很喜欢的一句话:“每天多努力一点,不为别的,只为日后,能够多一些选择,选择舒心的日子,选择自己喜欢的人!”


目录

前言 

TensorFlow的起源 

TensorFlow基础知识 

安装

图计算

TensorFlow 2.0

张量 

tf.data 

模型存取 

Keras接口 

神经网络搭建 

 ​代码实战:手写数字


 

 

前言

对于程序员来说一种好的语言无疑是非常重要的,在深度学习中,就有一门语言:TensorFlow,集成了大量的深度学习常用函数,使得我们可以快速的部署模型,以及进行训练。所以,下面我们就开始了解以下TensorFlow中的各个函数的用法。

TensorFlow的起源

TensorFlow是一个基于数据编程的符号数学系统,被广泛用于割裂机器学习算法的编程实现,那么TensorFlow是谁构建的?它的前身是谷歌的DistBelief神经网络库。从2015年11月9日起,TensorFlow阿帕奇授权协议开放源代码。

据小道消息,我们现在用的TensorFlow只是一小部分,其真身还是在谷歌的内部,所以说,我们的和国外的差距还是很大的,需要各位读者努力学习,缩短差距。

TensorFlow基础知识

安装

python用户安装,只需要使用pip install tensorflow命令行即可.

如果需要GPU加速,则输入:

pip install tensorflow-gpu

安装完后,可以使用以下命令查看版本:

import tensorflow as tf

tf.__version__ 

图计算

对于深度学习框架,图计算是基础中的基础。前面讲了深度学习中的正向传播和反向传播,图计算就是将 深度学习中的正向传播和反向求导顺序构建成一张图,之后计算的时候只要更具图中的顺序更新参数即可。

图计算分为两大类:静态图和动态图。静态图就是先定义一整张图片,在进行计算,优点是再次运行的时候不需要重新构建计算图;而对于动态图,每次计算都会重建一个新的计算图,优点是随时可以解决缺陷(bug),不需要等到整张图构建完才可以解决bug。

TensorFlow应该使用哪一种?版本不同,使用的也不同,在版本1.x中,默认使用静态图,需要先创建图(graph),之后才能在会话中(session)进行计算,但是也可以通过快速执行(eager)模式,进行动态图计算。而在最新的2.x版本中,默认为动态图模式。

TensorFlow 2.0

相比之前的版本,2.0版本的TensorFlow具有了很多的优点:

(1)大量简化API。

(2)快速执行。

(3)不需要再创建会话。

(4)不再使用全局变量跟踪。

(5)统一保存模式。

TensorFlow的确是非常便于学习和使用的,让我们可以把更多的精力放在研究方向上。

 张量

TensorFlow和PyTorch中的数据模型很多都是用张量的形式来存储,所谓张量,就是一个高维的矩阵。在TensorFlow中,使用tf.Tensor类表示张量,一个张量的参数有编号(id)、形状(shape=())、数据类型(dtype)、值(value)、所在计算图(graph)、张量名称(name)。

张量中最常用的就是常量和变量,常量用tf.constant,而变量用tf.Variable类,参数为名称(name)、形状(shape)、数据类型(dtype)、数值(value)。

张量的数据类型:

tf.float32    32 位浮点数
tf.float64    64 位浮点数
tf.int64    64 位有符号整型
tf.int32    32 位有符号整型
tf.int16    16 位有符号整型
tf.int8    8 位有符号整型
tf.uint8    8 位无符号整型
tf.string    可变长度的字节数组.每一个张量元素都是一个字节数组
tf.bool    布尔型
tf.complex64    由两个32位浮点数组成的复数:实数和虚数
tf.qint32    用于量化Ops的32位有符号整型
tf.qint8    用于量化Ops的8位有符号整型
tf.quint8    用于量化Ops的8位无符号整型

下面用代码来展示一下:

import tensorflow as tf
a=tf.constant(2,name='a')
b=tf.constant(3,name='b')
#计算a+b
x=tf.add(a,b)
print(x)
print(a+b)
#得到a的形状
a.get_shape()
#得到a的值
a.numpy()

#变量
s=tf.Variable(2,name='scaler')
n=tf.Variable([[0,1],[2,3]],name='matrix')
w=tf.Variable(tf.zeros([784,10]))
#将变量s赋值为3
s.assign(3)
#将变量的值加3
s.assign_add(3)
s.numpy()

tf.Tensor(5, shape=(), dtype=int32) tf.Tensor(5, shape=(), dtype=int32)

6

tf.data

在构建数据流的时候,我们可以创建数据集,创建数据集的作用就是提高速度,效率,那么为什么会有如此的作用喃?

其实就是将CPU的空闲时间缩短了,转为GPU空闲,利用率大幅上升。

import tensorflow as tf




a=tf.constant(2,name='a')
b=tf.constant(3,name='b')
#计算a+b
x=tf.add(a,b)
print(x)
print(a+b)
#得到a的形状
a.get_shape()
#得到a的值
a.numpy()

#变量
s=tf.Variable(2,name='scaler')
n=tf.Variable([[0,1],[2,3]],name='matrix')
w=tf.Variable(tf.zeros([784,10]))
#将变量s赋值为3
s.assign(3)
#将变量的值加3
s.assign_add(3)
s.numpy()

'''
#创建数据集方法(3种)
tf.data.Dataset.from_tensors((features,labels))
tf.data.Dataset.from_tensor_slices((freatures,labels))
tf.data.Dataset.from_generator(gen,output_types,output_shapes)
'''
#创建数据集方法的区别
dataset=tf.data.Dataset.from_tensors([1,2,3,4,5])
for element in dataset:
    print(element.numpy())
it=iter(dataset)
print(next(it).numpy())
dataset=tf.data.Dataset.from_tensor_slices([1,2,3,4,5])
for element in dataset:
    print(element.numpy())
it=iter(dataset)
print(next(it).numpy())

#读取数据集
#包含多个txt文件的行
tf.data.TextLineDataset(filename) #filename代表的是路径
#来自一个或多个二进制文件的固定长度记录的数据集
tf.data.FixedLengthRecordDataset(filename)
#包含多个TFRecord文件的记录
tf.data.TFRecordDataset(filename)
#合并数据集

features=tf.data.Dataset.from_tensors([1,2,3,4,5])
labels=tf.data.Dataset.from_tensor_slices([6,7,8,9,10])
dataset=tf.data.Dataset.zip((features,labels))
for element in dataset:
    print(element)

#对数据取batch,注意batch(4)不是指取4个数据,而是将数据集中的数据打包为4个一组
inc_dataset=tf.data.Dataset.range(100)
dec_dataset=tf.data.Dataset.range(0,-100,-1)
dataset=tf.data.Dataset.zip((inc_dataset,dec_dataset))
batched_dataset=dataset.batch(4)

#读取数据集
for batch in batched_dataset.take(4):
    print([arr.numpy() for arr in batch])
#对数据集进行随机打乱
shuffle_dataset=dataset.shuffle(buffer_size=10)
for element in shuffle_dataset:
    print(element)
#使用常用的数据
tf.keras.datasets.xx.load_data()


模型存取

在TensorFlow种有两种保存模型的方式,第一种是只保存模型的权重,我们也称之为保存为检查点(checkpoint),使用函数model.save_weights('checkpoint'),由于只保存了权重,在读取模型的时候,我们必须重新搭建模型,之后使用model.restore(ckpt)即可。

第二种是保存整个模型,使用model.save('my_model.h5'),读取的时候就不需要重新搭建模型了,直接使用model=load_model('my_model.h5')。

Keras接口

为了方便我们进行函数的使用,TensorFlow中给出了一个接口,这个接口中包含了很多的函数,我们直接使用这个接口就可以了。下面来介绍介绍这个接口的神奇之处。

一、全连接层:tf.keras.layers.Dense,此函数的参数为神经元数量units,激活函数activation、是否使用偏置参数use_bias,初始化参数initialializer、正则化参数regularizer。

二、卷积层:tf.keras.layers.Conv1D、2D、3D,共三种不同维度的卷积层,分别对应输入为词向量、图片和视频。此函数的参数为卷积核数量filters、卷积尺寸核kernel_size、滑动步长strides、填充方式padding、激活函数activation、是否使用偏置参数use_bias初始化参数initializer、正则化参数regularizer。

三、池化层:池化层非常多,分为平均池化层tf.keras.layers.AveragePooling2D()、最大池化层tf.keras.layers.MaxPool2D()、全局平均池化层tf.keras.layers.GlobalAveragePooling2D()和全局最大池化层tf.keras.layers.GlobalMaxPool2D。所谓全局池化层,就是对某一维度进行平均,例如输入为28x28的图片,输出为28x1的向量。函数的参数为池化大小为pool_size、滑动步长strides、填充方式padding。

Dropout层:tf.keras.layers.Dropout

BatchNorm层:tf.keras.layers.BatchNormalization

RNN单元:tf.keras.layers.RNN

LSTM单元:tf.keras.layers.LSTM

GRU单元:tf.keras.layers.GRU

最后,常用的优化器:tf.keras.optimizers.Adagrad、Adagrad、tf.keras.optimizers.Adam,以及tf.keras.optimizers.SGD。 

神经网络搭建


model=tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28,28)),
    tf.keras.layers.Dense(128,activation='relu',bias=False,trainable=False),
    tf.keras.layers.Dense(10,activation='softmax')
])
#卷积神经网络
model1=tf.keras.Sequential()
model1.add(tf.keras.layers.Conv2D(32,(3,3),activation='relu',input_shape=(28,28,1)))
model1.add(tf.keras.layers.MaxPooling2D((2,2)))
model1.add(tf.keras.layers.Conv2D(64,(3,3),activation='relu',input_shape=(28,28,1)))
model1.add(tf.keras.layers.MaxPooling2D((2,2)))
model1.add(tf.keras.layers.Conv2D(64,(3,3),activation='relu',input_shape=(28,28,1)))
model1.add(tf.keras.layers.Flatten())
model1.add(tf.keras.layers.Dense(256,activation='relu'))
model1.add(tf.keras.layers.Dense(10,activation='softmax'))

#RNN网络
model2=tf.keras.Sequential()
model2.add(tf.keras.layers.LSTM(128,input_shape=(None,28)))
model2.add(tf.keras.layers.Dense(10,activation='softmax'))

 代码实战:手写数字



import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
#读取模型
fashion_mnist=tf.keras.datasets.fashion_mnist
(train_images,train_labels),(test_images,test_labels)=fashion_mnist.load_data()  #下载数据模型
#获得图片大小
train_images.shape

#打印图例
def plotImages(images_arr):
    fig,axes=plt.subplots(1,5,figsize=(10,10))
    axes=axes.flatten()
    for img,ax in zip(images_arr,axes):
        ax.imshow(img)
        ax.axis('off')
    plt.tight_layout()
    plt.show()
plotImages(train_images[:5])
#归一化
train_images=train_images/255.0
test_images=test_images/255.0
#全连接层模型
model=tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28,28)),
    tf.keras.layers.Dense(128,activation='relu',trainable=False),
    tf.keras.layers.Dense(10,activation='softmax')
])
#模型总结
model.summary()
#编译
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',metrics=['accuracy'])
#训练
model.fit(train_images,train_labels,epochs=10,validation_data=(test_images,test_labels))
#模型权重
model.variables
#保存权重
model.save_weights('./fashion_mnist/my_checkpoint')
#恢复权重
model.load_weights('./fashion_mnist/my_checkpoint')
#预测
loss,acc=model.evaluate(test_images,test_labels,verbose=2)
print('Restored model,accuracy:{:5.2f}%'.format(100*acc))
#保存整个模型
model.save('my_model.h5')
new_model=tf.keras.models.load_model('my_model.h5')
loss,acc=new_model.evaluate(test_images,test_labels,verbose=2)
print('Restored model,accuracy:{:5.2f}%'.format(100*acc))
#在文件中名中包含epoch(使用'str.format')
checkpoint_path='fashion_mnist_1/cp-{epoch:04d}.ckpt'
#创建一个回调,每个epoch保存模型的权重
cp_callback=tf.keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_path,
    save_weights_only=True,
    period=1
)
#使用checkpoint_path格式保存权重
model.save_weights(checkpoint_path.format(epoch=0))
#实用新的回调训练模型
model.fit(train_images,
          train_labels,epochs=5,
          callbacks=[cp_callback],
          validation_data=(test_images,test_labels))

 这就是训练成功的数据集。好了,本节内容就到此结束了,拜拜了你嘞!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/413161.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

redis整理之-持久化

redis整理之-持久化5. 持久化5.1 持久化简介5.1.1 场景-意外断电5.1.2 什么是持久化5.2 RDB5.2.1 save指令5.2.2 bgsave指令5.2.3 save配置自动执行5.2.4 RDB三种启动方式对比5.3 AOF5.3.1 AOF概念5.3.2 AOF执行策略5.3.3 AOF重写5.3.4 AOF工作流程及重写流程5.4 RDB与AOF区别5…

python开发环境的安装,PyCharm+python解释器

文章目录注意:软件打包下载:PyCharm的下载与安装下载安装python解释器的下载与安装下载安装PyCharm软件设置注意: 以下是Windows下的安装,Linux以及其他操作系统下的安装请类比参照! 软件打包下载: PyCh…

主干网络backbone讲解—— Conv4与Resnet12

1 Conv4 在一些论文中,也称为Conv-64F。其中“64F”表示网络中使用了64个滤波器(filters) 它包含 4 个重复的卷积块,在每个块中包含: 一个 kernel3,stride1,padding1的卷积层;一个…

jquery中的ajax方法怎样通过JSONP进行远程调用

关于JSONP的概念以及为什么要使用JSONP您可以参考JSONP教程,本文的重点在于演示下在JQUERY中的Ajax方法怎样通过JSONP进行远程调用。 $.ajax的参数 首先介绍下$.ajax的参数: type:请求方式 GET/POST url:请求地址 async:布尔类型&#xff…

第十四届蓝桥杯大赛软件赛省赛 C/C++ 大学 A 组题解+个人总结

提示:此题解为本人自己解决,如有差错请大家多多指正。 文章目录题解总结一、幸运数1.试题2.解法3.代码二、[有奖问答](https://blog.csdn.net/A2105153335/article/details/130038980?spm1001.2014.3001.5501)三、[平方差](https://blog.csdn.net/A2105…

spring 随笔 ioc/di 4-Bean生命周期钩子

0. RUN,或8RUN,是每年都会思考的问题 Spring框架后置处理器PostProcessor详解 BeanDefinitionRegistryPostProcessor 扩展接口 动态注册bean AOP的高级特性targetSource AnnotationAwareAspectJAutoProxyCreator#postProcessBeforeInstantiation源码解析…

第五十九章 线段树(二)

第五十九章 线段树(二)一、懒标记(lazy_tag)1、作用2、思路二、结构体定义三、带有懒标记的函数操作1、pushup函数2、build函数3、modify函数4、pushdown函数5、query函数四、代码一、懒标记(lazy_tag) 1、…

redis五大基本数据类型之(源码分析)

redis五大数据结构StringHashsetListZset总结String String 是最基本的 key-value 结构,key 是唯一标识,value 是具体的值,value其实不仅是字符串, 也可以是数字(整数或浮点数),value 最多可以…

远程桌面连接是什么?远程桌面连接使用教程

有时候电脑出现各类网络连接、网址访问出错问题,自己无法解决的情况下,常常会求助其他擅长IT的同事或朋友,要么自己通过社交工具在线沟通、要么抱着电脑找人家解决。然而,通过远程桌面完全可以让朋友同事远程帮自己查看电脑问题&a…

永远加载不满的进度条

前言 各位开发大佬,平时肯定见到过这种进度条吧,一直在加载,但等了好久都是在99% 如下所示:有没有好奇这个玩意儿咋做的呢?细听分说 (需要看使用:直接看实践即可) fake-progress …

亚马逊云科技Serverless Data:数字经济下的创新动能

Serverless时代已经到来!企业的技术架构,总是伴随着不断增长的数据与日趋复杂的业务持续演进。如何通过构建更易用的技术架构来聚焦在业务本身,而不必在底层基础设施的管理上投入过多的精力,是数据驱动型企业需要思考的重要议题。…

实操| 前端新人无敲代码开发APP

作为一种大型的基于GPT-3. 5结构的语言模型,ChatGPT由OpenAI训练,采用深度学习技术,通过大量的文本数据学习,可以生成类似于人类自然语言的文字。ChatGPT是一种非常强大的对话引擎,能进行对话、回答问题和完成任务。Ch…

数据库锁原理

数据库锁原理锁的定义InnoDB中的锁模式共享锁独占锁共享意向锁和独占意向锁LOCK_AUTO_INC自增锁INNODB_AUTOINC_LOCK_MODEInnoDB中的锁类型表锁行锁行子类型LOCK_REC_NOT_GAP精准行锁LOCK_GAP行GAP锁LOCK_ORDINARY行NEXT-KEY锁LOCK_INSERT_INTENTION插入意向锁锁的定义 为了体…

数据分析之Matplotlib 基础入门

目录 第一章 什么是Matplotlib 常见图表及其分类 Matplotlib 第一个绘图程序 第二章 Matplotlib 基础 Matplotlib 图表常用设置 颜色设置 线条样式和标记样式 画布设置 设置坐标轴标题 设置坐标轴刻度 设置坐标轴范围 设置网格线 设置文本标签和标题 添加图例 添…

Image Deconvolution with the Half-quadratic Splitting Method

Image Deconvolution with the Half-quadratic Splitting Method 在处理图像重建或者逆问题的时候,我们经常会看到一种称为 Half-quadratic Splitting(HQS)的方法,这是在优化领域里非常经典的一种方法,之前也断断续续…

【Cesium 编程第一篇】概述、环境搭建、界面介绍

年前年后一直在面试,发现一个奇怪的现象:很多互联网公司经受住三年的疫情冲击,反而在疫情放开的那一刻撑不住了,很多大厂都在批量的裁员:美国硅谷、北京字节、迪士尼中国等等。在北京的朋友也是年后到现在一直没有找到…

AI是一场革命,我真不是在跟风

AI是场革命,好像现在很多人都开始这么说,那么我说我不是在跟风,为什么?不好意思,又要翻翻旧贴 -> AI是一场革命,不要笑,我是认真的。2016年我就这样讲了,就如我常说的&#xff0c…

【《中国工业经济》论文复刻】“一带一路”倡议与中国企业升级

数据和变量描述 本部分介绍文章研究所使用的数据和关键变量。 数据来源:自主整理 时间范围:2012-2017年 变量说明: 相关变量见下表。 一. 摘要 近年来,中国应该如何实现产业升级受到学界的广泛关注,产业升级归根…

Widows下安装Nginx并设置开机自启

1 下载Nginx 下载地址:http://nginx.org/en/download.html 2 启动Nginx nginx的启动方式有两种:一种是直接点击nginx.exe启动,另一种是通过命令行启动 2.1 直接启动 找到nginx目录,双击nginx.exe 即可启动 2.2 命令行启动…

不卷不成魔,新时代的IT人员更需要卷,不卷不成活

简介 从2022年开始至今,IT界发生了很多巨大的变革带来了许多巨大的变化。 这些变革、这些变化导致了有人欢喜有人悲、有人迷茫有人焦虑。1年半来,迷茫、焦虑、精神内耗了也都差不多了,大家都已经认识到了现实,作为凡人的我们所能…