Altium Designer(AD)软件使用记录05-PCB叠层设计

news2025/1/11 0:23:36

目录

  • Altium Designer(AD)软件使用记录05-PCB叠层设计
  • 一、正片层和负片层的介绍
    • 1、正片层(Signal)
    • 2、负片层(Plane)
    • 3、内电层的分割实现
  • 二、正片层和负片层的内缩设计
    • 1、负片设置内缩
    • 20H原则
    • 2、正片铺铜设置内缩
      • 1、设置规则
      • 2、重新铺铜
  • 三、AD的层叠设计
  • 四、叠层设计需要注意的问题
    • 1、总的来说叠层设计主要要遵从两个规矩
    • 2、下面列出从两层板到八层板的叠层来进行示例讲解
      • 1、单面PCB板和双面PCB板的叠层
      • 2、四层板的叠层
      • 3、六层板的叠层
      • 4、八层板的叠层

Altium Designer(AD)软件使用记录05-PCB叠层设计

一、正片层和负片层的介绍

1、正片层(Signal)

正片就是平常用在走线的信号层,既走线的地方是铜线,用Polygon Pour进行大块敷铜填充。

2、负片层(Plane)

负片正好相反,既默认敷铜,走线的地方是分割线,也就是生成一个负片之后整一层就已经被敷铜了,要做的事情就是分割敷铜,再设置分割后的敷铜的网络。

3、内电层的分割实现

AD中直接用Line,快捷键PL,来分割,分割线不宜太细,用15mil及以上。
要分割敷铜时,只要用Line画一个封闭的多边形框,在双击框内敷铜设置网络即可。

正负片都可以用于内电层,正片通过走线和敷铜也可以实现。
负片的好处在于默认大块敷铜填充,在添加过孔,改变敷铜大小等等操作都不需要重Rebuild,这样省去了PROTEL重新敷铜计算的时间。中间层用于电源层和GND层时候,层面上大多是大块敷铜,这样用负片的优势就很明显。

建议与提示:建议信号层采取“正片”的方式处理,电源层和GND层采取“负片”的方式处理,可以很大程度上减小文件数据量的大小和提高设计的速度。

二、正片层和负片层的内缩设计

1、负片设置内缩

设计–>层叠管理器(快捷键DK),选中需要设置内缩的负片层

在这里插入图片描述

按F11弹出属性面板,找到Pullback distance栏填入需要内缩的值。

在这里插入图片描述
注:默认是叠层对称的,当设置第二层负片内缩值时,第三层也会同步修改为相同的值;若不需要同步修改(一层为GND,一层为PWR时),取消勾选Stack Symmetry即可设置不同的内缩值。

20H原则

20H原则是指电源层相对地层内缩20H的距离,H表示电源层与地层的距离。当然也是为抑制边缘辐射效应。在板的边缘会向外辐射电磁干扰。将电源层内缩,使得电场只在接地层的范围内传导,有效的提高了emc。若内缩20H则可以将70%的电场限制在接地边沿内;内缩100H则可以将98%的电场限制在内。
我们要求地平面大于电源或信号层,这样有利于防止对外辐射干扰和屏蔽外界对自身的干扰,一般情况下在pcb设计的时候把电源层比地层内缩1mm基本上就可以满足20H的原则。
在这里插入图片描述
我们内缩的距离就是我们之前说的“20H”的距离,这个H指的是电源层与地层之间的介质厚度,“20H规则”的采用是指要确保电源平面的边缘要比0V平面边缘至少缩入相当于两个平面间层距的20倍。

但是由于叠层的设计,在通常的一些PCB板上,严格满足20H的话,无法进行PCB布线了,所以一般的处理方式是电源GND 相对GND 内缩1MM,这样我们板子的性能也得到一定的保障。

我们也需要注意一下,我们的20H原则是在一定的前提下才可以有明显的效果。

1、电源平面要处在PCB内部,并且与他相邻的上下两个层都为0V平面,这两个0V平面向外延伸的距离至少要相当于他们各自与电源平面间层距的20倍。

2、PCB的总层数要大于或等于8层。

最后,负片地内缩20mil,负片电源内缩60mil。

然后在1mm的内缩带打上屏蔽地过孔,150mil一个。
在这里插入图片描述

2、正片铺铜设置内缩

1、设置规则

PCB设计界面 找到板框层,复制板框层并粘贴,转换为keep-out-layer禁止布线层 工具–转换–转换选择元素到keepout。建立一个和板框层一致的禁止布线层。

D-R 找到Clearance 右键选择新建规则,如下图所示:设置禁止布线层与铺铜的最小间距(内缩值)。
在这里插入图片描述

2、重新铺铜

PCB设计界面选中铺铜 T->G->R 重铺选中铺铜。
到此,就完成了。

三、AD的层叠设计

设计–>层叠管理器(快捷键DK)

在这里插入图片描述
1、可以添加层,Signal是正片,plane是负片
2、层的名字可以自己修改,一般设置为便于识别的名字
3、根据层叠结构设置板厚
4、为了满足设计的“20H”原则,可以设置负片层的内缩量

四、叠层设计需要注意的问题

1、总的来说叠层设计主要要遵从两个规矩

1、每个走线层都必须有一个邻近的参考层(电源或地层);

2、邻近的主电源层和地层要保持最小间距,以提供较大的耦合电容。

2、下面列出从两层板到八层板的叠层来进行示例讲解

1、单面PCB板和双面PCB板的叠层

对于两层板来说,由于板层数量少,已经不存在叠层的问题。控制EMI辐射主要从布线和布局来考虑;

单层板和双层板的电磁兼容问题越来越突出。造成这种现象的主要原因就是因是信号回路面积过大,不仅产生了较强的电磁辐射,而且使电路对外界干扰敏感。要改善线路的电磁兼容性,最简单的方法是减小关键信号的回路面积。

关键信号:从电磁兼容的角度考虑,关键信号主要指产生较强辐射的信号和对外界敏感的信号。能够产生较强辐射的信号一般是周期性信号,如时钟或地址的低位信号。对干扰敏感的信号是指那些电平较低的模拟信号。

单、双层板通常使用在低于10KHz的低频模拟设计中:

1)在同一层的电源走线以辐射状走线,并最小化线的长度总和;

2)走电源、地线时,相互靠近;在关键信号线边上布一条地线,这条地线应尽量靠近信号线。这样就形成了较小的回路面积,减小差模辐射对外界干扰的敏感度。当信号线的旁边加一条地线后,就形成了一个面积最小的回路,信号电流肯定会取道这个回路,而不是其它地线路径。

3)如果是双层线路板,可以在线路板的另一面,紧靠近信号线的下面,沿着信号线布一条地线,一线尽量宽些。这样形成的回路面积等于线路板的厚度乘以信号线的长度。

2、四层板的叠层

  1. SIG-GND(PWR)-PWR (GND)-SIG;
  2. GND-SIG(PWR)-SIG(PWR)-GND;

对于以上两种叠层设计,潜在的问题是对于传统的1.6mm(62mil)板厚。层间距将会变得很大,不仅不利于控制阻抗,层间耦合及屏蔽;特别是电源地层之间间距很大,降低了板电容,不利于滤除噪声。

对于第一种方案,通常应用于板上芯片较多的情况。这种方案可得到较好的SI性能,对于EMI性能来说并不是很好,主要要通过走线及其他细节来控制。主要注意:地层放在信号最密集的信号层的相连层,有利于吸收和抑制辐射;增大板面积,体现20H规则。

对于第二种方案,通常应用于板上芯片密度足够低和芯片周围有足够面积(放置所要求的电源覆铜层)的场合。此种方案PCB的外层均为地层,中间两层均为信号 /电源层。信号层上的电源用宽线走线,这可使电源电流的路径阻抗低,且信号微带路径的阻抗也低,也可通过外层地屏蔽内层信号辐射。从EMI控制的角度看, 这是现有的最佳4层PCB结构。

主要注意:中间两层信号、电源混合层间距要拉开,走线方向垂直,避免出现串扰;适当控制板面积,体现20H规则;如果要控 制走线阻抗,上述方案要非常小心地将走线布置在电源和接地铺铜岛的下边。另外,电源或地层上的铺铜之间应尽可能地互连在一起,以确保DC和低频的连接性。

3、六层板的叠层

对于芯片密度较大、时钟频率较高的设计应考虑6层板的设计,推荐叠层方式:
1.SIG-GND-SIG-PWR-GND-SIG;

对于这种方案,这种叠层方案可得到较好的信号完整性,信号层与接地层相邻,电源层和接地层配对,每个走线层的阻抗都可较好控制,且两个地层都是能良好的吸收磁力线。并且在电源、地层完整的情况下能为每个信号层都提供较好的回流路径。

2.GND-SIG-GND-PWR-SIG -GND;

对于这种方案,该种方案只适用于器件密度不是很高的情况,这种叠层具有上面叠层的所有优点,并且这样顶层和底层的地平面比较完整,能作为一个较好的屏蔽层 来使用。需要注意的是电源层要靠近非主元件面的那一层,因为底层的平面会更完整。因此,EMI性能要比第一种方案好。

小结:对于六层板的方案,电源层与地层之间的间距应尽量减小,以获得好的电源、地耦合。但62mil的板厚,层间距虽然得到减小,还是不容易把主电源与地 层之间的间距控制得很小。对比第一种方案与第二种方案,第二种方案成本要大大增加。因此,我们叠层时通常选择第一种方案。设计时,遵循20H规则和镜像层 规则设计。

4、八层板的叠层

1、由于差的电磁吸收能力和大的电源阻抗导致这种不是一种好的叠层方式。它的结构如下:

1.Signal 1 元件面、微带走线层

2.Signal 2 内部微带走线层,较好的走线层(X方向)

3.Ground

4.Signal 3 带状线走线层,较好的走线层(Y方向)

5.Signal 4 带状线走线层

6.Power

7.Signal 5 内部微带走线层

8.Signal 6 微带走线层

2、是第三种叠层方式的变种,由于增加了参考层,具有较好的EMI性能,各信号层的特性阻抗可以很好的控制

1.Signal 1 元件面、微带走线层,好的走线层
2.Ground 地层,较好的电磁波吸收能力
3.Signal 2 带状线走线层,好的走线层
4.Power 电源层,与下面的地层构成优秀的电磁吸收
5.Ground 地层
6.Signal 3 带状线走线层,好的走线层
7.Power 地层,具有较大的电源阻抗
8.Signal 4 微带走线层,好的走线层

3、最佳叠层方式,由于多层地参考平面的使用具有非常好的地磁吸收能力。

1.Signal 1 元件面、微带走线层,好的走线层
2.Ground 地层,较好的电磁波吸收能力
3.Signal 2 带状线走线层,好的走线层
4.Power 电源层,与下面的地层构成优秀的电磁吸收
5.Ground 地层
6.Signal 3 带状线走线层,好的走线层
7.Ground 地层,较好的电磁波吸收能力
8.Signal 4 微带走线层,好的走线层

对于如何选择设计用几层板和用什么方式的叠层,要根据板上信号网络的数量,器件密度,PIN密度,信号的频率,板的大小等许多因素。对于这些因素我们要综合考虑。

对于信号网络的数量越多,器件密度越大,PIN密度越大,信号的频率越高的设计应尽量采用多层板设计。为得到好的EMI性能最好保证每个信号层都 有自己的参考层。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/403334.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机组成原理_总线标准

计算机组成原理总目录总线标准 总线标准是系统与各模块、模块与模块之间的一个互连的标准,就像我们用汉语来相互交流一样。 1. 系统总线 ISA总线的扩展插槽,其颜色一般为黑色,比PCI接口插槽要长些,位于主板的最下端。 可插接显卡&…

Java中的深克隆与浅克隆

浅克隆: 实现Cloneable接口即可实现,浅克隆只对象内部的基础数据类型(包括包装类)被克隆,引用数据类型(负责对象)会被使用引用的方式传递。 简单来说,就是浅克隆属性如果是复杂对象…

java多线程(二五)ReentrantReadWriteLock读写锁详解(1)

一、读写锁简介 现实中有这样一种场景:对共享资源有读和写的操作,且写操作没有读操作那么频繁。在没有写操作的时候,多个线程同时读一个资源没有任何问题,所以应该允许多个线程同时读取共享资源;但是如果一个线程想去…

有关3dmax对齐技巧的那些事

建模操作中,对齐是非常常用的一个功能,用好这个对齐功能能够事半功倍,好处我不说了,下面我们这篇博文就来说说3dmax对齐技巧的相关的内容。 文章目录一、点对齐1、样条线中的点对齐2、多边形中的点对齐二、线对齐三、面对齐四、物…

DJI ROS dji_sdk 源码分析|整体框架

DJI ROS dji_sdk 源码分析|整体框架launch文件CMakeLists.txtcpp文件main.cppOSDK 是一个用于开发无人机应用程序的开发工具包,基于OSDK 开发的应用程序能够运行在机载计算机上(如Manifold 2),开发者通过调用OSDK 中指定的接口能够…

计算机网络考研-第一章学

计算机网学习总结第一章计算机系统概述1.1.1 导学1.1.2 操作系统的特征1.2 操作系统的发展与分类1.3 操作系统的运行环境1.3.1 操作系统的运行机制1.3.2 中断和异常1.3.3系统调用:1.3.4 操作系统的体系结构第一章总结第一章计算机系统概述 1.1.1 导学 1.1.2 操作系…

Nginx 配置实例-反向代理案例一

实现效果:使用nginx反向代理,访问 www.suke.com 直接跳转到本机地址127.0.0.1:8080 一、准备工作 Centos7 安装 Nginxhttps://liush.blog.csdn.net/article/details/125027693 1. 启动一个 tomcat Centos7安装JDK1.8https://liush.blog.csdn.net/arti…

简单粗暴的分布式定时任务解决方案

分布式定时任务1.为什么需要定时任务?2.数据库实现分布式定时任务3.基于redis实现1.为什么需要定时任务? 因为有时候我们需要定时的执行一些操作,比如业务中产生的一些临时文件,临时文件不能立即删除,因为不清楚用户是…

基于FPGA实现正弦插值算法

1、正弦插值的算法分析 1.1 信号在时域与频域的映射关系 在进行正弦算法分析之前,我们回顾一下《数字信号处理》课程中,对于信号在时域与频域之间的映射关系,如下图。 对于上图中的原始信号x(t),使用ADC对信号进行采样&#xff0…

【操作系统】进程句柄

进程句柄句柄是什么为什么需要句柄作用句柄是什么 先给结论,句柄(handle)实际上是一个指向指针的指针。 它指向进程所要访问的进程对象的地址,是用来找到目标进程的索引,当我们想要访问对象进程时,就要利…

从一道面试题看 TCP 的吞吐极限

分享一个 TCP 面试题:单条 TCP 流如何打满香港到旧金山的 320Gbps 专线?(补充,写成 400Gbps 更具迷惑性,但预测大多数人都会跑偏,320Gbps 也就白给了) 这个题目是上周帮一个朋友想的,建议他别问三次握手&a…

C#:Krypton控件使用方法详解(第十六讲) ——kryptonCheckedListBox

今天介绍的Krypton控件中的kryptonCheckedListBox。下面介绍控件的外观属性如下图所示:Cursor属性:表示鼠标移动过该控件的时候,鼠标显示的形状。属性值如下图所示:UseWaitCursor属性:表示鼠标在控件中等待时&#xff…

问ChatGPT:零基础如何学好.Net Core?

更多开源项目请查看:一个专注推荐.Net开源项目的榜单 ChatGPT横空出世,一下子让全球互联网企业都慌了,纷纷表示:马上跟进发布ChatGPT,媒体纷纷报道大有改变教培行业。 下面我们问问ChatGPT:零基础如何学好…

EasyCVR视频融合平台开放插件功能:支持EasyNTS与EasyShark抓包

EasyCVR视频融合平台基于云边端一体化架构,具有强大的数据接入、处理及分发能力,平台支持海量视频汇聚管理,能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,实现视频资源的鉴权管理、按需调阅…

GPS/GPRS车载定位系统智能终端设计μC/OS-Ⅱ调度液晶显示汽车行驶记录仪电路

wx供重浩:创享日记 对话框发送:gps电路 免费下载完整无水印论文报告(包含主板电路图和采集板电路图) 文章目录一、绪论二、车载智能终端三、车载智能终端的硬件结构及设计四、车载智能终端的软件结构及设计五、总结和展望附录一 汽…

小i机器人登陆纳斯达克:市值4.2亿美元,与苹果打了10年专利侵权官司

‍数据智能产业创新服务媒体——聚焦数智 改变商业要问当前科技圈里最靓的仔是谁?那当然是非 ChatGPT莫属。当下谁能推出真正意义上的中国版ChatGPT,并且在这轮AI浪潮竞争白热化阶段中笑到最后,已经成为人们关注的焦点。美东时间3月9日&…

使用chatgpt写6.5分作文范文

其实使用chatgpt最大的背单词好处就是你可以看到真正的外国人的思维到底是如何的。而且,你也可以看到chatgpt这个模型,如果是编写代码的话,你如果使用中文,它编写的效果是没有英文输入的好的,为什么呢?因为…

Vector - CAPL - log回放模块函数

Replay log回放模块作为我们常见的问题分析小工具,是大部分车载圈老人的必备工具,不过自从CANoe软件11.0之后的版本变动依然无法阻挡每一个车载人使用的热情,除了我们常见的手动回放log外,我们工作中还有一部分低概率以及极低概率出现的问题,这时候我们就需要通过自动化对…

python趣味编程-2048游戏

在上一期我们用Python实现了一个盒子追逐者的游戏,这一期我们继续使用Python实现一个简单的2048游戏,让我们开始今天的旅程吧~ 在 Python 免费源代码中使用 Tkinter 的简单 2048 游戏 使用 Tkinter 的简单 2048 游戏是一个用Python编程语言编码的桌面游…

阅读笔记DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

zi,t∈Rz_{i,t}\in \mathbb{R}zi,t​∈R表示时间序列iii在ttt时刻的值。给一个连续时间段t∈[1,T]t\in [1, T]t∈[1,T],将其划分为context window[1,t0)[1,t_0)[1,t0​)和prediction window[t0,T][t_0,T][t0​,T]。用context window的时间序列预测prediction window…