06_01_Spark SQL

news2024/9/23 13:21:53

Spark SQL

课程目标

  • 说出Spark Sql的相关概念
  • 说出DataFrame与RDD的联系
  • 独立实现Spark Sql对JSON数据的处理
  • 独立实现Spark Sql进行数据清洗

1、Spark SQL 概述

Spark SQL概念

  • Spark SQL is Apache Spark’s module for working with structured data.
    • 它是spark中用于处理结构化数据的一个模块

Spark SQL历史

  • Hive是目前大数据领域,事实上的数据仓库标准。
    在这里插入图片描述

  • Shark:shark底层使用spark的基于内存的计算模型,从而让性能比Hive提升了数倍到上百倍。

  • 底层很多东西还是依赖于Hive,修改了内存管理、物理计划、执行三个模块

  • 2014年6月1日的时候,Spark宣布了不再开发Shark,全面转向Spark SQL的开发

Spark SQL优势

  • Write Less Code

在这里插入图片描述

  • Performance
    在这里插入图片描述

python操作RDD,转换为可执行代码,运行在java虚拟机,涉及两个不同语言引擎之间的切换,进行进程间 通信很耗费性能。

DataFrame

  • 是RDD为基础的分布式数据集,类似于传统关系型数据库的二维表,dataframe记录了对应列的名称和类型
  • dataFrame引入schema和off-heap(使用操作系统层面上的内存)
    • 1、解决了RDD的缺点
    • 序列化和反序列化开销大
    • 频繁的创建和销毁对象造成大量的GC
    • 2、丢失了RDD的优点
    • RDD编译时进行类型检查
    • RDD具有面向对象编程的特性

用scala/python编写的RDD比Spark SQL编写转换的RDD慢,涉及到执行计划

  • CatalystOptimizer:Catalyst优化器
  • ProjectTungsten:钨丝计划,为了提高RDD的效率而制定的计划
  • Code gen:代码生成器

在这里插入图片描述

直接编写RDD也可以自实现优化代码,但是远不及SparkSQL前面的优化操作后转换的RDD效率高,快1倍左右

优化引擎:类似mysql等关系型数据库基于成本的优化器

首先执行逻辑执行计划,然后转换为物理执行计划(选择成本最小的),通过Code Generation最终生成为RDD

  • Language-independent API

    用任何语言编写生成的RDD都一样,而使用spark-core编写的RDD,不同的语言生成不同的RDD

  • Schema

    结构化数据,可以直接看出数据的详情

    在RDD中无法看出,解释性不强,无法告诉引擎信息,没法详细优化。

为什么要学习sparksql

sparksql特性

  • 1、易整合
  • 2、统一的数据源访问
  • 3、兼容hive
  • 4、提供了标准的数据库连接(jdbc/odbc)

2、DataFrame

2.1 介绍

在Spark语义中,DataFrame是一个分布式的行集合,可以想象为一个关系型数据库的表,或者一个带有列名的Excel表格。它和RDD一样,有这样一些特点:

  • Immuatable:一旦RDD、DataFrame被创建,就不能更改,只能通过transformation生成新的RDD、DataFrame
  • Lazy Evaluations:只有action才会触发Transformation的执行
  • Distributed:DataFrame和RDD一样都是分布式的
  • dataframe和dataset统一,dataframe只是dataset[ROW]的类型别名。由于Python是弱类型语言,只能使用DataFrame

DataFrame vs RDD

  • RDD:分布式的对象的集合,Spark并不知道对象的详细模式信息
  • DataFrame:分布式的Row对象的集合,其提供了由列组成的详细模式信息,使得Spark SQL可以进行某些形式的执行优化。
  • DataFrame和普通的RDD的逻辑框架区别如下所示:

在这里插入图片描述

  • 左侧的RDD Spark框架本身不了解 Person类的内部结构。

  • 右侧的DataFrame提供了详细的结构信息(schema——每列的名称,类型)

  • DataFrame还配套了新的操作数据的方法,DataFrame API(如df.select())和SQL(select id, name from xx_table where …)。

  • DataFrame还引入了off-heap,意味着JVM堆以外的内存, 这些内存直接受操作系统管理(而不是JVM)。

  • RDD是分布式的Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化。

  • DataFrame的抽象后,我们处理数据更加简单了,甚至可以用SQL来处理数据了

  • 通过DataFrame API或SQL处理数据,会自动经过Spark 优化器(Catalyst)的优化,即使你写的程序或SQL不仅高效,也可以运行的很快。

  • DataFrame相当于是一个带着schema的RDD

Pandas DataFrame vs Spark DataFrame

  • Cluster Parallel:集群并行执行
  • Lazy Evaluations: 只有action才会触发Transformation的执行
  • Immutable:不可更改
  • Pandas rich API:比Spark SQL api丰富

2.2 创建DataFrame

1,创建dataFrame的步骤

​ 调用方法例如:spark.read.xxx方法

2,其他方式创建dataframe

  • createDataFrame:pandas dataframe、list、RDD

  • 数据源:RDD、csv、json、parquet、orc、jdbc

    jsonDF = spark.read.json("xxx.json")
    
    jsonDF = spark.read.format('json').load('xxx.json')
    
    parquetDF = spark.read.parquet("xxx.parquet")
    
    jdbcDF = spark.read.format("jdbc").option("url","jdbc:mysql://localhost:3306/db_name").option("dbtable","table_name").option("user","xxx").option("password","xxx").load()
    
  • Transformation:延迟性操作

  • action:立即操作
    在这里插入图片描述

2.3 DataFrame API实现

基于RDD创建

from pyspark.sql import SparkSession
from pyspark.sql import Row

spark = SparkSession.builder.appName('test').getOrCreate()
sc = spark.sparkContext
# spark.conf.set("spark.sql.shuffle.partitions", 6)
# ================直接创建==========================
l = [('Ankit',25),('Jalfaizy',22),('saurabh',20),('Bala',26)]
rdd = sc.parallelize(l)
#为数据添加列名
people = rdd.map(lambda x: Row(name=x[0], age=int(x[1])))
#创建DataFrame
schemaPeople = spark.createDataFrame(people)

从csv中读取数据

# ==================从csv读取======================
#加载csv类型的数据并转换为DataFrame
df = spark.read.format("csv"). \
    option("header", "true") \
    .load("iris.csv")
#显示数据结构
df.printSchema()
#显示前10条数据
df.show(10)
#统计总量
df.count()
#列名
df.columns

增加一列

# ===============增加一列(或者替换) withColumn===========
#定义一个新的列,数据为其他某列数据的两倍
#如果操作的是原有列,可以替换原有列的数据
df.withColumn('newWidth',df.SepalWidth * 2).show()

删除一列

# ==========删除一列  drop=========================
#删除一列
df.drop('cls').show()

统计信息

#================ 统计信息 describe================
df.describe().show()
#计算某一列的描述信息
df.describe('cls').show()   

提取部分列

# ===============提取部分列 select==============
df.select('SepalLength','SepalWidth').show()

基本统计功能

# ==================基本统计功能 distinct count=====
df.select('cls').distinct().count()

分组统计

# 分组统计 groupby(colname).agg({'col':'fun','col2':'fun2'})
df.groupby('cls').agg({'SepalWidth':'mean','SepalLength':'max'}).show()

# avg(), count(), countDistinct(), first(), kurtosis(),
# max(), mean(), min(), skewness(), stddev(), stddev_pop(),
# stddev_samp(), sum(), sumDistinct(), var_pop(), var_samp() and variance()

自定义的汇总方法

# 自定义的汇总方法
import pyspark.sql.functions as fn
#调用函数并起一个别名
df.agg(fn.count('SepalWidth').alias('width_count'),fn.countDistinct('cls').alias('distinct_cls_count')).show()

拆分数据集

#====================数据集拆成两部分 randomSplit ===========
#设置数据比例将数据划分为两部分
trainDF, testDF = df.randomSplit([0.6, 0.4])

采样数据

# ================采样数据 sample===========
#withReplacement:是否有放回的采样
#fraction:采样比例
#seed:随机种子
sdf = df.sample(False,0.2,100)

查看两个数据集在类别上的差异

#查看两个数据集在类别上的差异 subtract,确保训练数据集覆盖了所有分类
diff_in_train_test = testDF.select('cls').subtract(trainDF.select('cls'))
diff_in_train_test.distinct().count()

交叉表

# ================交叉表 crosstab=============
df.crosstab('cls','SepalLength').show()

udf

udf:自定义函数

#================== 综合案例 + udf================
# 测试数据集中有些类别在训练集中是不存在的,找到这些数据集做后续处理
trainDF,testDF = df.randomSplit([0.99,0.01])

diff_in_train_test = trainDF.select('cls').subtract(testDF.select('cls')).distinct().show()

#首先找到这些类,整理到一个列表
not_exist_cls = trainDF.select('cls').subtract(testDF.select('cls')).distinct().rdd.map(lambda x :x[0]).collect()

#定义一个方法,用于检测
def should_remove(x):
    if x in not_exist_cls:
        return -1
    else :
        return x

#创建udf,udf函数需要两个参数:
# Function
# Return type (in my case StringType())

#在RDD中可以直接定义函数,交给rdd的transformatioins方法进行执行
#在DataFrame中需要通过udf将自定义函数封装成udf函数再交给DataFrame进行调用执行

from pyspark.sql.types import StringType
from pyspark.sql.functions import udf


check = udf(should_remove,StringType())

resultDF = trainDF.withColumn('New_cls',check(trainDF['cls'])).filter('New_cls <> -1')

resultDF.show()

3、JSON数据的处理

3.1 介绍

JSON数据

  • Spark SQL can automatically infer the schema of a JSON dataset and load it as a DataFrame

    Spark SQL能够自动将JSON数据集以结构化的形式加载为一个DataFrame

  • This conversion can be done using SparkSession.read.json on a JSON file

    读取一个JSON文件可以用SparkSession.read.json方法

从JSON到DataFrame

  • 指定DataFrame的schema

    1,通过反射自动推断,适合静态数据

    2,程序指定,适合程序运行中动态生成的数据

加载json数据

#使用内部的schema
jsonDF = spark.read.json("xxx.json")
jsonDF = spark.read.format('json').load('xxx.json')

#指定schema
jsonDF = spark.read.schema(jsonSchema).json('xxx.json')

嵌套结构的JSON

  • 重要的方法

    1,get_json_object

    2,get_json

    3,explode

3.2 实践

3.1 静态json数据的读取和操作

无嵌套结构的json数据

from pyspark.sql import SparkSession
spark =  SparkSession.builder.appName('json_demo').getOrCreate()
sc = spark.sparkContext

# ==========================================
#                无嵌套结构的json
# ==========================================
jsonString = [
"""{ "id" : "01001", "city" : "AGAWAM",  "pop" : 15338, "state" : "MA" }""",
"""{ "id" : "01002", "city" : "CUSHMAN", "pop" : 36963, "state" : "MA" }"""
]

从json字符串数组得到DataFrame

# 从json字符串数组得到rdd有两种方法
# 1. 转换为rdd,再从rdd到DataFrame
# 2. 直接利用spark.createDataFrame(),见后面例子

jsonRDD = sc.parallelize(jsonString)   # stringJSONRDD
jsonDF =  spark.read.json(jsonRDD)  # convert RDD into DataFrame
jsonDF.printSchema()
jsonDF.show()

直接从文件生成DataFrame

# -- 直接从文件生成DataFrame
#只有被压缩后的json文件内容,才能被spark-sql正确读取,否则格式化后的数据读取会出现问题
jsonDF = spark.read.json("xxx.json")
# or
# jsonDF = spark.read.format('json').load('xxx.json')

jsonDF.printSchema()
jsonDF.show()

jsonDF.filter(jsonDF.pop>4000).show(10)
#依照已有的DataFrame,创建一个临时的表(相当于mysql数据库中的一个表),这样就可以用纯sql语句进行数据操作
jsonDF.createOrReplaceTempView("tmp_table")

resultDF = spark.sql("select * from tmp_table where pop>4000")
resultDF.show(10)

3.2 动态json数据的读取和操作

指定DataFrame的Schema

3.1节中的例子为通过反射自动推断schema,适合静态数据

下面我们来讲解如何进行程序指定schema

没有嵌套结构的json

jsonString = [
"""{ "id" : "01001", "city" : "AGAWAM",  "pop" : 15338, "state" : "MA" }""",
"""{ "id" : "01002", "city" : "CUSHMAN", "pop" : 36963, "state" : "MA" }"""
]

jsonRDD = sc.parallelize(jsonString)

from pyspark.sql.types import *

#定义结构类型
#StructType:schema的整体结构,表示JSON的对象结构
#XXXStype:指的是某一列的数据类型
jsonSchema = StructType() \
  .add("id", StringType(),True) \
  .add("city", StringType()) \
  .add("pop" , LongType()) \
  .add("state",StringType())

jsonSchema = StructType() \
  .add("id", LongType(),True) \
  .add("city", StringType()) \
  .add("pop" , DoubleType()) \
  .add("state",StringType())

reader = spark.read.schema(jsonSchema)

jsonDF = reader.json(jsonRDD)
jsonDF.printSchema()
jsonDF.show()

带有嵌套结构的json

from pyspark.sql.types import *
jsonSchema = StructType([
    StructField("id", StringType(), True),
    StructField("city", StringType(), True),
    StructField("loc" , ArrayType(DoubleType())),
    StructField("pop", LongType(), True),
    StructField("state", StringType(), True)
])

reader = spark.read.schema(jsonSchema)
jsonDF = reader.json('data/nest.json')
jsonDF.printSchema()
jsonDF.show(2)
jsonDF.filter(jsonDF.pop>4000).show(10)

4、数据清洗

前面我们处理的数据实际上都是已经被处理好的规整数据,但是在大数据整个生产过程中,需要先对数据进行数据清洗,将杂乱无章的数据整理为符合后面处理要求的规整数据。

数据去重

'''
1.删除重复数据

groupby().count():可以看到数据的重复情况
'''
df = spark.createDataFrame([
  (1, 144.5, 5.9, 33, 'M'),
  (2, 167.2, 5.4, 45, 'M'),
  (3, 124.1, 5.2, 23, 'F'),
  (4, 144.5, 5.9, 33, 'M'),
  (5, 133.2, 5.7, 54, 'F'),
  (3, 124.1, 5.2, 23, 'F'),
  (5, 129.2, 5.3, 42, 'M'),
], ['id', 'weight', 'height', 'age', 'gender'])

# 查看重复记录
#无意义重复数据去重:数据中行与行完全重复
# 1.首先删除完全一样的记录
df2 = df.dropDuplicates()

#有意义去重:删除除去无意义字段之外的完全重复的行数据
# 2.其次,关键字段值完全一模一样的记录(在这个例子中,是指除了id之外的列一模一样)
# 删除某些字段值完全一样的重复记录,subset参数定义这些字段
df3 = df2.dropDuplicates(subset = [c for c in df2.columns if c!='id'])
# 3.有意义的重复记录去重之后,再看某个无意义字段的值是否有重复(在这个例子中,是看id是否重复)
# 查看某一列是否有重复值
import pyspark.sql.functions as fn
df3.agg(fn.count('id').alias('id_count'),fn.countDistinct('id').alias('distinct_id_count')).collect()
# 4.对于id这种无意义的列重复,添加另外一列自增id

df3.withColumn('new_id',fn.monotonically_increasing_id()).show()

缺失值处理

'''
2.处理缺失值
2.1 对缺失值进行删除操作(行,列)
2.2 对缺失值进行填充操作(列的均值)
2.3 对缺失值对应的行或列进行标记
'''
df_miss = spark.createDataFrame([
(1, 143.5, 5.6, 28,'M', 100000),
(2, 167.2, 5.4, 45,'M', None),
(3, None , 5.2, None, None, None),
(4, 144.5, 5.9, 33, 'M', None),
(5, 133.2, 5.7, 54, 'F', None),
(6, 124.1, 5.2, None, 'F', None),
(7, 129.2, 5.3, 42, 'M', 76000),],
 ['id', 'weight', 'height', 'age', 'gender', 'income'])

# 1.计算每条记录的缺失值情况

df_miss.rdd.map(lambda row:(row['id'],sum([c==None for c in row]))).collect()
[(1, 0), (2, 1), (3, 4), (4, 1), (5, 1), (6, 2), (7, 0)]

# 2.计算各列的缺失情况百分比
df_miss.agg(*[(1 - (fn.count(c) / fn.count('*'))).alias(c + '_missing') for c in df_miss.columns]).show()

# 3、删除缺失值过于严重的列
# 其实是先建一个DF,不要缺失值的列
df_miss_no_income = df_miss.select([
c for c in df_miss.columns if c != 'income'
])

# 4、按照缺失值删除行(threshold是根据一行记录中,缺失字段的百分比的定义)
df_miss_no_income.dropna(thresh=3).show()

# 5、填充缺失值,可以用fillna来填充缺失值,
# 对于bool类型、或者分类类型,可以为缺失值单独设置一个类型,missing
# 对于数值类型,可以用均值或者中位数等填充

# fillna可以接收两种类型的参数:
# 一个数字、字符串,这时整个DataSet中所有的缺失值都会被填充为相同的值。
# 也可以接收一个字典{列名:值}这样

# 先计算均值,并组织成一个字典
means = df_miss_no_income.agg( *[fn.mean(c).alias(c) for c in df_miss_no_income.columns if c != 'gender']).toPandas().to_dict('records')[0]
# 然后添加其它的列
means['gender'] = 'missing'

df_miss_no_income.fillna(means).show()

异常值处理

'''
3、异常值处理
异常值:不属于正常的值 包含:缺失值,超过正常范围内的较大值或较小值
分位数去极值
中位数绝对偏差去极值
正态分布去极值
上述三种操作的核心都是:通过原始数据设定一个正常的范围,超过此范围的就是一个异常值
'''
df_outliers = spark.createDataFrame([
(1, 143.5, 5.3, 28),
(2, 154.2, 5.5, 45),
(3, 342.3, 5.1, 99),
(4, 144.5, 5.5, 33),
(5, 133.2, 5.4, 54),
(6, 124.1, 5.1, 21),
(7, 129.2, 5.3, 42),
], ['id', 'weight', 'height', 'age'])
# 设定范围 超出这个范围的 用边界值替换

# approxQuantile方法接收三个参数:参数1,列名;参数2:想要计算的分位点,可以是一个点,也可以是一个列表(0和1之间的小数),第三个参数是能容忍的误差,如果是0,代表百分百精确计算。

cols = ['weight', 'height', 'age']

bounds = {}
for col in cols:
    quantiles = df_outliers.approxQuantile(col, [0.25, 0.75], 0.05)
    IQR = quantiles[1] - quantiles[0]
    bounds[col] = [
        quantiles[0] - 1.5 * IQR,
        quantiles[1] + 1.5 * IQR
        ]

>>> bounds
{'age': [-11.0, 93.0], 'height': [4.499999999999999, 6.1000000000000005], 'weight': [91.69999999999999, 191.7]}

# 为异常值字段打标志
outliers = df_outliers.select(*['id'] + [( (df_outliers[c] < bounds[c][0]) | (df_outliers[c] > bounds[c][1]) ).alias(c + '_o') for c in cols ])
outliers.show()
#
# +---+--------+--------+-----+
# | id|weight_o|height_o|age_o|
# +---+--------+--------+-----+
# |  1|   false|   false|false|
# |  2|   false|   false|false|
# |  3|    true|   false| true|
# |  4|   false|   false|false|
# |  5|   false|   false|false|
# |  6|   false|   false|false|
# |  7|   false|   false|false|
# +---+--------+--------+-----+

# 再回头看看这些异常值的值,重新和原始数据关联

df_outliers = df_outliers.join(outliers, on='id')
df_outliers.filter('weight_o').select('id', 'weight').show()
# +---+------+
# | id|weight|
# +---+------+
# |  3| 342.3|
# +---+------+

df_outliers.filter('age_o').select('id', 'age').show()
# +---+---+
# | id|age|
# +---+---+
# |  3| 99|
# +---+---+

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/400759.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

百家号如何写文章赚钱,百家号写文章真的赚钱?

随着互联网的快速发展&#xff0c;越来越多的人开始关注到写文章赚钱这个领域。而在众多写作平台中&#xff0c;头条号无疑是最受欢迎的一个。那么&#xff0c;百家号写文章赚钱是真的吗&#xff1f;如何写文章赚钱呢&#xff1f;下面我们就来一一解答。 首先&#xff0c;百家号…

Javascript的ES6 class写法和ES5闭包写法性能对比

看到很多闭包写法的函数, 一直怀疑它对性能是否有影响. 还有就是备受推崇的React Hooks函数式写法中出现大量的闭包和临时函数, 我很担心这样会影响性能. 于是, 做了一个实验来做对比. 这个实验很简单, 用md5计算一百万次. 计算过程将结果再放回参数, 这样避免结果没被引用被…

Git 学习(三)—— 本地仓库 — 远程仓库的操作命令

为了可以让其他用户看到自己的成果&#xff0c;我们可以将自己本地仓库的内容上传到远程仓库&#xff1b;如果我们希望借鉴其他用户的成果&#xff0c;我们可以将远程仓库里的一些内容拉取或者克隆到本地仓库。 这里先暂不考虑 本地到远程 或者 远程到本地 的一些相关操作&…

避坑指南—GPL开源协议

0x00 前言 本文主要目的是为了了解一些基础的GPL注意事项&#xff0c;以及防止被一些一知半解的人蒙骗。本文不做任何内容的依据&#xff0c;仅为个人见解&#xff0c;仅供参考。 一些常见的开源协议 GPLBSDMITMozillaApacheLGPL 0x01 GPL GPL许可协议(GNU General Public …

知识点——域适应、域泛化、在线测试适应区别 DA、DG、TTA区别

文章目录1.Domain Adaptation( DA&#xff1a;域适应 )源域和目标域&#xff1a;DA研究问题&#xff1a;DA目标&#xff1a;DA主要思想&#xff1a;DA三种方法&#xff1a;2.Domain generalization( DG&#xff1a;域泛化 )DG研究问题&#xff1a;DG目标&#xff1a;DA和DG优点…

css——图片缩放,拉伸,变形的解决办法

你的图片即将变得超级丝滑图片为什么会拉伸变形&#xff1f;怎么解决&#xff1f;css的object-fit属性object-fit属性有什么用介绍一下object-position举个小栗子图片为什么会拉伸变形&#xff1f; 前端布局时&#xff0c;图片会出现拉伸、缩放和变形的原因可能有多种: 1.例如图…

2.3操作系统-存储管理:页式存储、逻辑地址、物理地址、物理地址逻辑地址之间的地址关系、页面大小与页内地址长度的关系、缺页中断、内存淘汰规则

2.3操作系统-存储管理&#xff1a;页式存储、逻辑地址、物理地址、物理地址逻辑地址之间的地址关系、页面大小与页内地址长度的关系、缺页中断、内存淘汰规则页式存储逻辑地址、物理地址如何判断物理地址和逻辑地址它们之间的地址关系&#xff1f;页面大小与页内地址长度的关系…

现货交易入门之垂死挣扎

本文讲解的也是挣扎形态&#xff0c;前面以已经讲过一个挣扎形态&#xff0c;但是本文这个形态的名字更让人能耳目一新&#xff0c;因为它叫“垂死挣扎线”&#xff0c;这并不是普通的挣扎线。是“垂死”的&#xff01; “垂死挣扎线”与“顶部挣扎线”很相似&#xff0c;都是出…

JavaApi操作ElasticSearch(强烈推荐)

ElasticSearch 高级 1 javaApi操作es环境搭建 在elasticsearch官网中提供了各种语言的客户端&#xff1a;https://www.elastic.co/guide/en/elasticsearch/client/index.html 而Java的客户端就有两个&#xff1a; 不过Java API这个客户端&#xff08;Transport Client&#…

element-ui日期选择器时间差

关于使用element-ui日期选择器时&#xff0c;发现时间差问题&#xff0c;特此记录下 #主要记录三个问题 日期选择器选择时获取到的格式相差八小时当日期格式为–拼接时&#xff0c;转成时间戳会相差八小时&#xff08;2023-03-09&#xff09;DatePicker设置区域范围和校验&…

TiDB数据库架构概述

文章目录TiDB体系架构TiDB ServerStorage Cluster(存储引擎)PD cluster题目TiDB体系架构 TiDB Server Sql语句最先到达 TiDB Server集群 它是无状态的&#xff0c;数据并不是存储在这里面&#xff0c;当一个会话连接到TiDB Server集群上&#xff0c;sql语句发过来&#xff0c…

大数据自学学习技巧?

经常有人说&#xff1a;先别管大数据是什么&#xff0c;现在理解不了没关系&#xff0c;先开始学&#xff0c;等学着学着就明白了&#xff0c;这种学习路线基本是混合的&#xff0c;很难分清楚自己学了这段怎么用在以后项目中&#xff0c;所以会越学越迷茫&#xff0c;但是等你…

机房漏水设备受损,一招轻松避免

随着科学信息技术的发展和社会经济的快速发展,计算机系统得到了广泛的应用&#xff0c;计算机房设备中使用的设备越来越多。 漏水对机房内精密电子设备容易造成损坏&#xff0c;电器短路等。一旦机房发生漏液&#xff0c;水流到线槽&#xff0c;会导致机房断电&#xff0c;造成…

IPv6公共DNS现在提供加密DNS查询

支持DoT/DoH DoT:dns.ipv6dns.comDoH:https://dns.ipv6dns.com/dns-query为什么需要加密DNS 配置: Windows 10/8/7 1 右键网络进入属性或者右键右下角的Inernet进入网络共享中心,如下图: 2 点击网络和共享中心左侧的"更改适配器设置"链接,如下图: 3 选中正…

一文读懂pinia Vue状态管理

文章目录1.概述&#xff1a;2. 准备工作3.pinia 安装及使用3.1. 安装pinia3.2 store的创建和使用3.3 getters 使用3.4 action 的使用3.5 总结示例代码4.总结1.概述&#xff1a; pinia 类似与vue2 中的vuex &#xff0c;实现跨页面共享状态管理&#xff0c;类似与java 中的sess…

Git设置SSH Key

一、git 配置 &#xff08;1&#xff09;打开 git 命令窗口 &#xff08;2&#xff09;配置用户名&#xff08;填自己的姓名&#xff09; git config --global user.name “xinyu.xia” &#xff08;3&#xff09;配置用户邮箱&#xff08;填自己的邮箱&#xff0…

在SNAP中用sentinel-1数据做DInSAR测量---以门源地震为例

在SNAP中用sentinel-1数据做DInSAR测量---以门源地震为例0 写在前面1 数据下载2 处理步骤2.1 split2.2 apply orbit 导入精密轨道2.3 查看数据的时空基线base line2.4 back-geocoding 配准2.5 Enhanced Spectral Diversity2.6 Deburst2.7 Interogram Formation 生成干涉图2.8 M…

【Unity3D日常开发】Unity3D中协程的使用

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享简书地址我的个人博客 大家好&#xff0c;我是佛系工程师☆恬静的小魔龙☆&#xff0c;不定时更新Unity开发技巧&#xff0c;觉得有用记得一键三连哦。 一、前言 最近有小伙伴问协程怎么用、怎么写&#xff0c;我也是会用会写…

Revit管理链接模型视图样式和链接CAD

一、Revit中如何管理链接模型的视图样式 Revit软件协同&#xff0c;无非就两种方式&#xff1a;1、工作集;2、链接文件。其中“工作集”属于软件内部的工作协调方式&#xff0c;不是我们本期问题汇总要说明的问题&#xff0c;这里我们着重说一下第二种关于“链接文件”方式协同…

我们的理性何处安放

每天工作压力和各种人相处都让我们非常忙碌&#xff0c;我们上大学&#xff0c;努力工作&#xff0c;都是想获得更好的人生场景&#xff0c;素养&#xff0c;提升自身的认知&#xff0c;这样就是对我们大多数人生最负责任。如何让自己理性与人为善&#xff0c;并能被人温柔以待…