【ROS学习笔记13】ROS中的TF坐标变换

news2025/1/21 5:58:31

【ROS学习笔记13】ROS中的TF坐标变换

文章目录

  • 【ROS学习笔记13】ROS中的TF坐标变换
    • 前言
    • 1. 静态坐标变换
    • 2. 动态坐标变换
    • 3. 多坐标变换
    • 4. 坐标系关系查看
    • 5. TF坐标变换实操
    • Reference

写在前面,本系列笔记参考的是AutoLabor的教程,具体项目地址在 这里

前言

在ROS中内置一些比较实用的工具,通过这些工具可以方便快捷的实现某个功能或调试程序,从而提高开发效率,本章主要介绍ROS中内置的如下组件:

  • TF坐标变换,实现不同类型的坐标系之间的转换;
  • rosbag 用于录制ROS节点的执行过程并可以重放该过程;
  • rqt 工具箱,集成了多款图形化的调试工具。

本章预期达成的学习目标:

  • 了解 TF 坐标变换的概念以及应用场景;
  • 能够独立完成TF案例:小乌龟跟随;
  • 可以使用 rosbag 命令或编码的形式实现录制与回放;
  • 能够熟练使用rqt中的图形化工具。

案例演示: 小乌龟跟随实现,该案例是ros中内置案例,终端下键入启动命令

roslaunch turtle_tf2 turtle_tf2_demo_cpp.launch
roslaunch turtle_tf2 turtle_tf2_demo.launch

键盘可以控制一只乌龟运动,另一只跟随运动。

示例的结果:


1. 静态坐标变换

所谓静态坐标变换,是指两个坐标系之间的相对位置是固定的。

需求描述:

现有一机器人模型,核心构成包含主体与雷达,各对应一坐标系,坐标系的原点分别位于主体与雷达的物理中心,已知雷达原点相对于主体原点位移关系如下: x 0.2 y0.0 z0.5。当前雷达检测到一障碍物,在雷达坐标系中障碍物的坐标为 (2.0 3.0 5.0),请问,该障碍物相对于主体的坐标是多少?

结果演示:

实现分析:

  1. 坐标系相对关系,可以通过发布方发布
  2. 订阅方,订阅到发布的坐标系相对关系,再传入坐标点信息(可以写死),然后借助于 tf 实现坐标变换,并将结果输出

**实现流程:**C++ 与 Python 实现流程一致

  1. 新建功能包,添加依赖
  2. 编写发布方实现
  3. 编写订阅方实现
  4. 执行并查看结果

方案A:C++实现

1.创建功能包

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs

2.发布方

/* 
    静态坐标变换发布方:
        发布关于 laser 坐标系的位置信息 

    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建静态坐标转换广播器
        4.创建坐标系信息
        5.广播器发布坐标系信息
        6.spin()
*/


// 1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/static_transform_broadcaster.h"
#include "geometry_msgs/TransformStamped.h"
#include "tf2/LinearMath/Quaternion.h"

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"static_brocast");
    // 3.创建静态坐标转换广播器
    tf2_ros::StaticTransformBroadcaster broadcaster;
    // 4.创建坐标系信息
    geometry_msgs::TransformStamped ts;
    //----设置头信息
    ts.header.seq = 100;
    ts.header.stamp = ros::Time::now();
    ts.header.frame_id = "base_link";
    //----设置子级坐标系
    ts.child_frame_id = "laser";
    //----设置子级相对于父级的偏移量
    ts.transform.translation.x = 0.2;
    ts.transform.translation.y = 0.0;
    ts.transform.translation.z = 0.5;
    //----设置四元数:将 欧拉角数据转换成四元数
    tf2::Quaternion qtn;
    qtn.setRPY(0,0,0);
    ts.transform.rotation.x = qtn.getX();
    ts.transform.rotation.y = qtn.getY();
    ts.transform.rotation.z = qtn.getZ();
    ts.transform.rotation.w = qtn.getW();
    // 5.广播器发布坐标系信息
    broadcaster.sendTransform(ts);
    ros::spin();
    return 0;
}

配置文件此处略。

示例效果:

使用

rviz

启动图形化界面,然后可以查看结果:

3.订阅方

/*  
    订阅坐标系信息,生成一个相对于 子级坐标系的坐标点数据,转换成父级坐标系中的坐标点

    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建 TF 订阅节点
        4.生成一个坐标点(相对于子级坐标系)
        5.转换坐标点(相对于父级坐标系)
        6.spin()
*/
//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "tf2_ros/buffer.h"
#include "geometry_msgs/PointStamped.h"
#include "tf2_geometry_msgs/tf2_geometry_msgs.h" //注意: 调用 transform 必须包含该头文件

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"tf_sub");
    ros::NodeHandle nh;
    // 3.创建 TF 订阅节点
    tf2_ros::Buffer buffer;
    tf2_ros::TransformListener listener(buffer);

    ros::Rate r(1);
    while (ros::ok())
    {
    // 4.生成一个坐标点(相对于子级坐标系)
        geometry_msgs::PointStamped point_laser;
        point_laser.header.frame_id = "laser";
        point_laser.header.stamp = ros::Time::now();
        point_laser.point.x = 2.0;
        point_laser.point.y = 3.0;
        point_laser.point.y = 5.0;
    // 5.转换坐标点(相对于父级坐标系)
        //新建一个坐标点,用于接收转换结果  
        //--------------使用 try 语句或休眠,否则可能由于缓存接收延迟而导致坐标转换失败------------------------
        try
        {
            geometry_msgs::PointStamped point_base;
            point_base = buffer.transform(point_laser,"base_link");
            ROS_INFO("转换后的数据:(%.2f,%.2f,%.2f),参考的坐标系是:%s",point_base.point.x,point_base.point.y,point_base.point.z,point_base.header.frame_id.c_str());

        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("程序异常.....");
        }


        r.sleep();  
        ros::spinOnce();
    }


    return 0;
}

配置文件此处略。

4.执行

可以使用命令行或launch文件的方式分别启动发布节点与订阅节点,如果程序无异常,控制台将输出,坐标转换后的结果。

执行的结果:


方案B:Python实现

1.创建功能包

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs

2.发布方

#! /usr/bin/env python
"""  
    静态坐标变换发布方:
        发布关于 laser 坐标系的位置信息 
    实现流程:
        1.导包
        2.初始化 ROS 节点
        3.创建 静态坐标广播器
        4.创建并组织被广播的消息
        5.广播器发送消息
        6.spin
"""
# 1.导包
import rospy
import tf2_ros
import tf
from geometry_msgs.msg import TransformStamped

if __name__ == "__main__":
    # 2.初始化 ROS 节点
    rospy.init_node("static_tf_pub_p")
    # 3.创建 静态坐标广播器
    broadcaster = tf2_ros.StaticTransformBroadcaster()
    # 4.创建并组织被广播的消息
    tfs = TransformStamped()
    # --- 头信息
    tfs.header.frame_id = "world"
    tfs.header.stamp = rospy.Time.now()
    tfs.header.seq = 101
    # --- 子坐标系
    tfs.child_frame_id = "radar"
    # --- 坐标系相对信息
    # ------ 偏移量
    tfs.transform.translation.x = 0.2
    tfs.transform.translation.y = 0.0
    tfs.transform.translation.z = 0.5
    # ------ 四元数
    qtn = tf.transformations.quaternion_from_euler(0,0,0)
    tfs.transform.rotation.x = qtn[0]
    tfs.transform.rotation.y = qtn[1]
    tfs.transform.rotation.z = qtn[2]
    tfs.transform.rotation.w = qtn[3]


    # 5.广播器发送消息
    broadcaster.sendTransform(tfs)
    # 6.spin
    rospy.spin()

权限设置以及配置文件此处略。

示例结果:

3.订阅方

#! /usr/bin/env python
"""  
    订阅坐标系信息,生成一个相对于 子级坐标系的坐标点数据,
    转换成父级坐标系中的坐标点

    实现流程:
        1.导包
        2.初始化 ROS 节点
        3.创建 TF 订阅对象
        4.创建一个 radar 坐标系中的坐标点
        5.调研订阅对象的 API 将 4 中的点坐标转换成相对于 world 的坐标
        6.spin

"""
# 1.导包
import rospy
import tf2_ros
# 不要使用 geometry_msgs,需要使用 tf2 内置的消息类型
from tf2_geometry_msgs import PointStamped
# from geometry_msgs.msg import PointStamped

if __name__ == "__main__":
    # 2.初始化 ROS 节点
    rospy.init_node("static_sub_tf_p")
    # 3.创建 TF 订阅对象
    buffer = tf2_ros.Buffer()
    listener = tf2_ros.TransformListener(buffer)

    rate = rospy.Rate(1)
    while not rospy.is_shutdown():    
    # 4.创建一个 radar 坐标系中的坐标点
        point_source = PointStamped()
        point_source.header.frame_id = "radar"
        point_source.header.stamp = rospy.Time.now()
        point_source.point.x = 10
        point_source.point.y = 2
        point_source.point.z = 3

        try:
    #     5.调研订阅对象的 API 将 4 中的点坐标转换成相对于 world 的坐标
            point_target = buffer.transform(point_source,"world")
            rospy.loginfo("转换结果:x = %.2f, y = %.2f, z = %.2f",
                            point_target.point.x,
                            point_target.point.y,
                            point_target.point.z)
        except Exception as e:
            rospy.logerr("异常:%s",e)

    #     6.spin
        rate.sleep()

权限设置以及配置文件此处略。

PS: 在 tf2 的 python 实现中,tf2 已经封装了一些消息类型,不可以使用 geometry_msgs.msg 中的类型

4.执行

可以使用命令行或launch文件的方式分别启动发布节点与订阅节点,如果程序无异常,控制台将输出,坐标转换后的结果。

示例的结果:

补充1:

当坐标系之间的相对位置固定时,那么所需参数也是固定的: 父系坐标名称、子级坐标系名称、x偏移量、y偏移量、z偏移量、x 翻滚角度、y俯仰角度、z偏航角度,实现逻辑相同,参数不同,那么 ROS 系统就已经封装好了专门的节点,使用方式如下:

rosrun tf2_ros static_transform_publisher x偏移量 y偏移量 z偏移量 z偏航角度 y俯仰角度 x翻滚角度 父级坐标系 子级坐标系

示例:rosrun tf2_ros static_transform_publisher 0.2 0 0.5 0 0 0 /baselink /laser

也建议使用该种方式直接实现静态坐标系相对信息发布。

补充2:

可以借助于rviz显示坐标系关系,具体操作:

  • 新建窗口输入命令:rviz;
  • 在启动的 rviz 中设置Fixed Frame 为 base_link;
  • 点击左下的 add 按钮,在弹出的窗口中选择 TF 组件,即可显示坐标关系。

2. 动态坐标变换

所谓动态坐标变换,是指两个坐标系之间的相对位置是变化的。

需求描述:

启动 turtlesim_node,该节点中窗体有一个世界坐标系(左下角为坐标系原点),乌龟是另一个坐标系,键盘控制乌龟运动,将两个坐标系的相对位置动态发布。

结果演示:

实现分析:

  1. 乌龟本身不但可以看作坐标系,也是世界坐标系中的一个坐标点
  2. 订阅 turtle1/pose,可以获取乌龟在世界坐标系的 x坐标、y坐标、偏移量以及线速度和角速度
  3. 将 pose 信息转换成 坐标系相对信息并发布

实现流程: C++ 与 Python 实现流程一致

  1. 新建功能包,添加依赖
  2. 创建坐标相对关系发布方(同时需要订阅乌龟位姿信息)
  3. 创建坐标相对关系订阅方
  4. 执行

方案A:C++实现

1.创建功能包

创建项目功能包依赖于

 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs、turtlesim

2.发布方

/*  
    动态的坐标系相对姿态发布(一个坐标系相对于另一个坐标系的相对姿态是不断变动的)

    需求: 启动 turtlesim_node,该节点中窗体有一个世界坐标系(左下角为坐标系原点),乌龟是另一个坐标系,键盘
    控制乌龟运动,将两个坐标系的相对位置动态发布

    实现分析:
        1.乌龟本身不但可以看作坐标系,也是世界坐标系中的一个坐标点
        2.订阅 turtle1/pose,可以获取乌龟在世界坐标系的 x坐标、y坐标、偏移量以及线速度和角速度
        3.将 pose 信息转换成 坐标系相对信息并发布

    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建 ROS 句柄
        4.创建订阅对象
        5.回调函数处理订阅到的数据(实现TF广播)
            5-1.创建 TF 广播器
            5-2.创建 广播的数据(通过 pose 设置)
            5-3.广播器发布数据
        6.spin
*/
// 1.包含头文件
#include "ros/ros.h"
#include "turtlesim/Pose.h"
#include "tf2_ros/transform_broadcaster.h"
#include "geometry_msgs/TransformStamped.h"
#include "tf2/LinearMath/Quaternion.h"

void doPose(const turtlesim::Pose::ConstPtr& pose){
    //  5-1.创建 TF 广播器
    static tf2_ros::TransformBroadcaster broadcaster;
    //  5-2.创建 广播的数据(通过 pose 设置)
    geometry_msgs::TransformStamped tfs;
    //  |----头设置
    tfs.header.frame_id = "world";
    tfs.header.stamp = ros::Time::now();

    //  |----坐标系 ID
    tfs.child_frame_id = "turtle1";

    //  |----坐标系相对信息设置
    tfs.transform.translation.x = pose->x;
    tfs.transform.translation.y = pose->y;
    tfs.transform.translation.z = 0.0; // 二维实现,pose 中没有z,z 是 0
    //  |--------- 四元数设置
    tf2::Quaternion qtn;
    qtn.setRPY(0,0,pose->theta);
    tfs.transform.rotation.x = qtn.getX();
    tfs.transform.rotation.y = qtn.getY();
    tfs.transform.rotation.z = qtn.getZ();
    tfs.transform.rotation.w = qtn.getW();


    //  5-3.广播器发布数据
    broadcaster.sendTransform(tfs);
}

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"dynamic_tf_pub");
    // 3.创建 ROS 句柄
    ros::NodeHandle nh;
    // 4.创建订阅对象
    ros::Subscriber sub = nh.subscribe<turtlesim::Pose>("/turtle1/pose",1000,doPose);
    //     5.回调函数处理订阅到的数据(实现TF广播)
    //        
    // 6.spin
    ros::spin();
    return 0;
}

实现效果:

配置文件此处略。

3.订阅方

//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "tf2_ros/buffer.h"
#include "geometry_msgs/PointStamped.h"
#include "tf2_geometry_msgs/tf2_geometry_msgs.h" //注意: 调用 transform 必须包含该头文件

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"dynamic_tf_sub");
    ros::NodeHandle nh;
    // 3.创建 TF 订阅节点
    tf2_ros::Buffer buffer;
    tf2_ros::TransformListener listener(buffer);

    ros::Rate r(1);
    while (ros::ok())
    {
    // 4.生成一个坐标点(相对于子级坐标系)
        geometry_msgs::PointStamped point_laser;
        point_laser.header.frame_id = "turtle1";
        point_laser.header.stamp = ros::Time();
        point_laser.point.x = 1;
        point_laser.point.y = 1;
        point_laser.point.z = 0;
    // 5.转换坐标点(相对于父级坐标系)
        //新建一个坐标点,用于接收转换结果  
        //--------------使用 try 语句或休眠,否则可能由于缓存接收延迟而导致坐标转换失败------------------------
        try
        {
            geometry_msgs::PointStamped point_base;
            point_base = buffer.transform(point_laser,"world");
            ROS_INFO("坐标点相对于 world 的坐标为:(%.2f,%.2f,%.2f)",point_base.point.x,point_base.point.y,point_base.point.z);

        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("程序异常:%s",e.what());
        }


        r.sleep();  
        ros::spinOnce();
    }


    return 0;
}

配置文件此处略。

4.执行

可以使用命令行或launch文件的方式分别启动发布节点与订阅节点,如果程序无异常,与演示结果类似。

可以使用 rviz 查看坐标系相对关系。

示例的结果:


方案B:Python实现

1.创建功能包

创建项目功能包依赖于

 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs、turtlesim

2.发布方

#! /usr/bin/env python
"""  
    动态的坐标系相对姿态发布(一个坐标系相对于另一个坐标系的相对姿态是不断变动的)

    需求: 启动 turtlesim_node,该节点中窗体有一个世界坐标系(左下角为坐标系原点),乌龟是另一个坐标系,键盘
    控制乌龟运动,将两个坐标系的相对位置动态发布

    实现分析:
        1.乌龟本身不但可以看作坐标系,也是世界坐标系中的一个坐标点
        2.订阅 turtle1/pose,可以获取乌龟在世界坐标系的 x坐标、y坐标、偏移量以及线速度和角速度
        3.将 pose 信息转换成 坐标系相对信息并发布
    实现流程:
        1.导包
        2.初始化 ROS 节点
        3.订阅 /turtle1/pose 话题消息
        4.回调函数处理
            4-1.创建 TF 广播器
            4-2.创建 广播的数据(通过 pose 设置)
            4-3.广播器发布数据
        5.spin
"""
# 1.导包
import rospy
import tf2_ros
import tf
from turtlesim.msg import Pose
from geometry_msgs.msg import TransformStamped

#     4.回调函数处理
def doPose(pose):
    #         4-1.创建 TF 广播器
    broadcaster = tf2_ros.TransformBroadcaster()
    #         4-2.创建 广播的数据(通过 pose 设置)
    tfs = TransformStamped()
    tfs.header.frame_id = "world"
    tfs.header.stamp = rospy.Time.now()
    tfs.child_frame_id = "turtle1"
    tfs.transform.translation.x = pose.x
    tfs.transform.translation.y = pose.y
    tfs.transform.translation.z = 0.0
    qtn = tf.transformations.quaternion_from_euler(0,0,pose.theta)
    tfs.transform.rotation.x = qtn[0]
    tfs.transform.rotation.y = qtn[1]
    tfs.transform.rotation.z = qtn[2]
    tfs.transform.rotation.w = qtn[3]
    #         4-3.广播器发布数据
    broadcaster.sendTransform(tfs)

if __name__ == "__main__":
    # 2.初始化 ROS 节点
    rospy.init_node("dynamic_tf_pub_p")
    # 3.订阅 /turtle1/pose 话题消息
    sub = rospy.Subscriber("/turtle1/pose",Pose,doPose)
    #     4.回调函数处理
    #         4-1.创建 TF 广播器
    #         4-2.创建 广播的数据(通过 pose 设置)
    #         4-3.广播器发布数据
    #     5.spin
    rospy.spin()

权限设置以及配置文件此处略。

示例的效果如下:

3.订阅方

#! /usr/bin/env python
"""  
    动态的坐标系相对姿态发布(一个坐标系相对于另一个坐标系的相对姿态是不断变动的)

    需求: 启动 turtlesim_node,该节点中窗体有一个世界坐标系(左下角为坐标系原点),乌龟是另一个坐标系,键盘
    控制乌龟运动,将两个坐标系的相对位置动态发布

    实现分析:
        1.乌龟本身不但可以看作坐标系,也是世界坐标系中的一个坐标点
        2.订阅 turtle1/pose,可以获取乌龟在世界坐标系的 x坐标、y坐标、偏移量以及线速度和角速度
        3.将 pose 信息转换成 坐标系相对信息并发布
    实现流程:
        1.导包
        2.初始化 ROS 节点
        3.创建 TF 订阅对象
        4.处理订阅的数据


"""
# 1.导包
import rospy
import tf2_ros
# 不要使用 geometry_msgs,需要使用 tf2 内置的消息类型
from tf2_geometry_msgs import PointStamped
# from geometry_msgs.msg import PointStamped

if __name__ == "__main__":
    # 2.初始化 ROS 节点
    rospy.init_node("static_sub_tf_p")
    # 3.创建 TF 订阅对象
    buffer = tf2_ros.Buffer()
    listener = tf2_ros.TransformListener(buffer)

    rate = rospy.Rate(1)
    while not rospy.is_shutdown():    
    # 4.创建一个 radar 坐标系中的坐标点
        point_source = PointStamped()
        point_source.header.frame_id = "turtle1"
        point_source.header.stamp = rospy.Time.now()
        point_source.point.x = 10
        point_source.point.y = 2
        point_source.point.z = 3

        try:
    #     5.调研订阅对象的 API 将 4 中的点坐标转换成相对于 world 的坐标
            point_target = buffer.transform(point_source,"world",rospy.Duration(1))
            rospy.loginfo("转换结果:x = %.2f, y = %.2f, z = %.2f",
                            point_target.point.x,
                            point_target.point.y,
                            point_target.point.z)
        except Exception as e:
            rospy.logerr("异常:%s",e)

    #     6.spin
        rate.sleep()

权限设置以及配置文件此处略。

4.执行

可以使用命令行或launch文件的方式分别启动发布节点与订阅节点,如果程序无异常,与演示结果类似。

可以使用 rviz 查看坐标系相对关系。

示例结果如下:


3. 多坐标变换

需求描述:

现有坐标系统,父级坐标系统 world,下有两子级系统 son1,son2,son1 相对于 world,以及 son2 相对于 world 的关系是已知的,求 son1原点在 son2中的坐标,又已知在 son1中一点的坐标,要求求出该点在 son2 中的坐标

实现分析:

  1. 首先,需要发布 son1 相对于 world,以及 son2 相对于 world 的坐标消息
  2. 然后,需要订阅坐标发布消息,并取出订阅的消息,借助于 tf2 实现 son1 和 son2 的转换
  3. 最后,还要实现坐标点的转换

**实现流程:**C++ 与 Python 实现流程一致

  1. 新建功能包,添加依赖
  2. 创建坐标相对关系发布方(需要发布两个坐标相对关系)
  3. 创建坐标相对关系订阅方
  4. 执行

方案A:C++实现

1.创建功能包

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs、turtlesim

2.发布方

为了方便,使用静态坐标变换发布

<launch>
    <node pkg="tf2_ros" type="static_transform_publisher" name="son1" args="5 0 0 0 0 0 /world /son1" output="screen" />
    <node pkg="tf2_ros" type="static_transform_publisher" name="son2" args="3 0 0 0 0 0 /world /son2" output="screen" />
</launch>

示例结果:

3.订阅方

/*

需求:
    现有坐标系统,父级坐标系统 world,下有两子级系统 son1,son2,
    son1 相对于 world,以及 son2 相对于 world 的关系是已知的,
    求 son1 与 son2中的坐标关系,又已知在 son1中一点的坐标,要求求出该点在 son2 中的坐标
实现流程:
    1.包含头文件
    2.初始化 ros 节点
    3.创建 ros 句柄
    4.创建 TF 订阅对象
    5.解析订阅信息中获取 son1 坐标系原点在 son2 中的坐标
      解析 son1 中的点相对于 son2 的坐标
    6.spin

*/
//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "tf2_ros/buffer.h"
#include "tf2_geometry_msgs/tf2_geometry_msgs.h"
#include "geometry_msgs/TransformStamped.h"
#include "geometry_msgs/PointStamped.h"

int main(int argc, char *argv[])
{   setlocale(LC_ALL,"");
    // 2.初始化 ros 节点
    ros::init(argc,argv,"sub_frames");
    // 3.创建 ros 句柄
    ros::NodeHandle nh;
    // 4.创建 TF 订阅对象
    tf2_ros::Buffer buffer; 
    tf2_ros::TransformListener listener(buffer);
    // 5.解析订阅信息中获取 son1 坐标系原点在 son2 中的坐标
    ros::Rate r(1);
    while (ros::ok())
    {
        try
        {
        //   解析 son1 中的点相对于 son2 的坐标
            geometry_msgs::TransformStamped tfs = buffer.lookupTransform("son2","son1",ros::Time(0));
            ROS_INFO("Son1 相对于 Son2 的坐标关系:父坐标系ID=%s",tfs.header.frame_id.c_str());
            ROS_INFO("Son1 相对于 Son2 的坐标关系:子坐标系ID=%s",tfs.child_frame_id.c_str());
            ROS_INFO("Son1 相对于 Son2 的坐标关系:x=%.2f,y=%.2f,z=%.2f",
                    tfs.transform.translation.x,
                    tfs.transform.translation.y,
                    tfs.transform.translation.z
                    );

            // 坐标点解析
            geometry_msgs::PointStamped ps;
            ps.header.frame_id = "son1";
            ps.header.stamp = ros::Time::now();
            ps.point.x = 1.0;
            ps.point.y = 2.0;
            ps.point.z = 3.0;

            geometry_msgs::PointStamped psAtSon2;
            psAtSon2 = buffer.transform(ps,"son2");
            ROS_INFO("在 Son2 中的坐标:x=%.2f,y=%.2f,z=%.2f",
                    psAtSon2.point.x,
                    psAtSon2.point.y,
                    psAtSon2.point.z
                    );
        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("异常信息:%s",e.what());
        }


        r.sleep();
        // 6.spin
        ros::spinOnce();
    }
    return 0;
}

配置文件此处略。

4.执行

可以使用命令行或launch文件的方式分别启动发布节点与订阅节点,如果程序无异常,将输出换算后的结果。

示例结果:

方案B:Python实现

1.创建功能包

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs、turtlesim

2.发布方

为了方便,使用静态坐标变换发布

<launch>
    <node pkg="tf2_ros" type="static_transform_publisher" name="son1" args="5 0 0 0 0 0 /world /son1" output="screen" />
    <node pkg="tf2_ros" type="static_transform_publisher" name="son2" args="3 0 0 0 0 0 /world /son2" output="screen" />
</launch>

3.订阅方

#!/usr/bin/env python
"""  
    需求:
        现有坐标系统,父级坐标系统 world,下有两子级系统 son1,son2,
        son1 相对于 world,以及 son2 相对于 world 的关系是已知的,
        求 son1 与 son2中的坐标关系,又已知在 son1中一点的坐标,要求求出该点在 son2 中的坐标
    实现流程:   
        1.导包
        2.初始化 ROS 节点
        3.创建 TF 订阅对象
        4.调用 API 求出 son1 相对于 son2 的坐标关系
        5.创建一依赖于 son1 的坐标点,调用 API 求出该点在 son2 中的坐标
        6.spin

"""
# 1.导包
import rospy
import tf2_ros
from geometry_msgs.msg import TransformStamped
from tf2_geometry_msgs import PointStamped

if __name__ == "__main__":

    # 2.初始化 ROS 节点
    rospy.init_node("frames_sub_p")
    # 3.创建 TF 订阅对象
    buffer = tf2_ros.Buffer()
    listener = tf2_ros.TransformListener(buffer)

    rate = rospy.Rate(1)
    while not rospy.is_shutdown():

        try:
        # 4.调用 API 求出 son1 相对于 son2 的坐标关系
            #lookup_transform(self, target_frame, source_frame, time, timeout=rospy.Duration(0.0)):
            tfs = buffer.lookup_transform("son2","son1",rospy.Time(0))
            rospy.loginfo("son1 与 son2 相对关系:")
            rospy.loginfo("父级坐标系:%s",tfs.header.frame_id)
            rospy.loginfo("子级坐标系:%s",tfs.child_frame_id)
            rospy.loginfo("相对坐标:x=%.2f, y=%.2f, z=%.2f",
                        tfs.transform.translation.x,
                        tfs.transform.translation.y,
                        tfs.transform.translation.z,
            )
        # 5.创建一依赖于 son1 的坐标点,调用 API 求出该点在 son2 中的坐标
            point_source = PointStamped()
            point_source.header.frame_id = "son1"
            point_source.header.stamp = rospy.Time.now()
            point_source.point.x = 1
            point_source.point.y = 1
            point_source.point.z = 1

            point_target = buffer.transform(point_source,"son2",rospy.Duration(0.5))

            rospy.loginfo("point_target 所属的坐标系:%s",point_target.header.frame_id)
            rospy.loginfo("坐标点相对于 son2 的坐标:(%.2f,%.2f,%.2f)",
                        point_target.point.x,
                        point_target.point.y,
                        point_target.point.z
            )

        except Exception as e:
            rospy.logerr("错误提示:%s",e)


        rate.sleep()
    # 6.spin    
    # rospy.spin()

权限设置以及配置文件此处略。

4.执行

可以使用命令行或launch文件的方式分别启动发布节点与订阅节点,如果程序无异常,将输出换算后的结果。


示例结果:


4. 坐标系关系查看

在机器人系统中,涉及的坐标系有多个,为了方便查看,ros 提供了专门的工具,可以用于生成显示坐标系关系的 pdf 文件,该文件包含树形结构的坐标系图谱。

1.准备

首先调用rospack find tf2_tools查看是否包含该功能包,如果没有,请使用如下命令安装:

sudo apt install ros-noetic-tf2-tools

2.使用

启动坐标系广播程序之后,运行如下命令,生成 pdf 文件

rosrun tf2_tools view_frames.py

会产生类似于下面的日志信息:

[INFO] [1592920556.827549]: Listening to tf data during 5 seconds...
[INFO] [1592920561.841536]: Generating graph in frames.pdf file...

查看当前目录会生成一个 frames.pdf 文件

可以直接进入目录打开文件,或者调用命令查看文件:evince frames.pdf,查看文件

内如如图所示:


5. TF坐标变换实操

需求描述:

程序启动之初: 产生两只乌龟,中间的乌龟(A) 和 左下乌龟(B), B 会自动运行至A的位置,并且键盘控制时,只是控制 A 的运动,但是 B 可以跟随 A 运行

结果演示:

实现分析:

乌龟跟随实现的核心,是乌龟A和B都要发布相对世界坐标系的坐标信息,然后,订阅到该信息需要转换获取A相对于B坐标系的信息,最后,再生成速度信息,并控制B运动。

  1. 启动乌龟显示节点
  2. 在乌龟显示窗体中生成一只新的乌龟(需要使用服务)
  3. 编写两只乌龟发布坐标信息的节点
  4. 编写订阅节点订阅坐标信息并生成新的相对关系生成速度信息

**实现流程:**C++ 与 Python 实现流程一致

  1. 新建功能包,添加依赖
  2. 编写服务客户端,用于生成一只新的乌龟
  3. 编写发布方,发布两只乌龟的坐标信息
  4. 编写订阅方,订阅两只乌龟信息,生成速度信息并发布
  5. 运行

准备工作:

1.了解如何创建第二只乌龟,且不受键盘控制

创建第二只乌龟需要使用rosservice,话题使用的是 spawn

rosservice call /spawn "x: 1.0
y: 1.0
theta: 1.0
name: 'turtle_flow'" 
name: "turtle_flow"

键盘是无法控制第二只乌龟运动的,因为使用的话题: /第二只乌龟名称/cmd_vel,对应的要控制乌龟运动必须发布对应的话题消息

2.了解如何获取两只乌龟的坐标

是通过话题 /乌龟名称/pose 来获取的

x: 1.0 //x坐标
y: 1.0 //y坐标
theta: -1.21437060833 //角度
linear_velocity: 0.0 //线速度
angular_velocity: 1.0 //角速度

方案A:C++实现

1.创建功能包

创建项目功能包依赖于

tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs、turtlesim

2.服务客户端(生成乌龟)

/* 
    创建第二只小乌龟
 */
#include "ros/ros.h"
#include "turtlesim/Spawn.h"

int main(int argc, char *argv[])
{

    setlocale(LC_ALL,"");

    //执行初始化
    ros::init(argc,argv,"create_turtle");
    //创建节点
    ros::NodeHandle nh;
    //创建服务客户端
    ros::ServiceClient client = nh.serviceClient<turtlesim::Spawn>("/spawn");

    ros::service::waitForService("/spawn");
    turtlesim::Spawn spawn;
    spawn.request.name = "turtle2";
    spawn.request.x = 1.0;
    spawn.request.y = 2.0;
    spawn.request.theta = 3.12415926;
    bool flag = client.call(spawn);
    if (flag)
    {
        ROS_INFO("乌龟%s创建成功!",spawn.response.name.c_str());
    }
    else
    {
        ROS_INFO("乌龟2创建失败!");
    }

    ros::spin();

    return 0;
}

配置文件此处略。

3.发布方(发布两只乌龟的坐标信息)

可以订阅乌龟的位姿信息,然后再转换成坐标信息,两只乌龟的实现逻辑相同,只是订阅的话题名称,生成的坐标信息等稍有差异,可以将差异部分通过参数传入:

  • 该节点需要启动两次
  • 每次启动时都需要传入乌龟节点名称(第一次是 turtle1 第二次是 turtle2)
/*  
    该文件实现:需要订阅 turtle1 和 turtle2 的 pose,然后广播相对 world 的坐标系信息

    注意: 订阅的两只 turtle,除了命名空间(turtle1 和 turtle2)不同外,
          其他的话题名称和实现逻辑都是一样的,
          所以我们可以将所需的命名空间通过 args 动态传入

    实现流程:
        1.包含头文件
        2.初始化 ros 节点
        3.解析传入的命名空间
        4.创建 ros 句柄
        5.创建订阅对象
        6.回调函数处理订阅的 pose 信息
            6-1.创建 TF 广播器
            6-2.将 pose 信息转换成 TransFormStamped
            6-3.发布
        7.spin

*/
//1.包含头文件
#include "ros/ros.h"
#include "turtlesim/Pose.h"
#include "tf2_ros/transform_broadcaster.h"
#include "tf2/LinearMath/Quaternion.h"
#include "geometry_msgs/TransformStamped.h"
//保存乌龟名称
std::string turtle_name;


void doPose(const turtlesim::Pose::ConstPtr& pose){
    //  6-1.创建 TF 广播器 ---------------------------------------- 注意 static
    static tf2_ros::TransformBroadcaster broadcaster;
    //  6-2.将 pose 信息转换成 TransFormStamped
    geometry_msgs::TransformStamped tfs;
    tfs.header.frame_id = "world";
    tfs.header.stamp = ros::Time::now();
    tfs.child_frame_id = turtle_name;
    tfs.transform.translation.x = pose->x;
    tfs.transform.translation.y = pose->y;
    tfs.transform.translation.z = 0.0;
    tf2::Quaternion qtn;
    qtn.setRPY(0,0,pose->theta);
    tfs.transform.rotation.x = qtn.getX();
    tfs.transform.rotation.y = qtn.getY();
    tfs.transform.rotation.z = qtn.getZ();
    tfs.transform.rotation.w = qtn.getW();
    //  6-3.发布
    broadcaster.sendTransform(tfs);

} 

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ros 节点
    ros::init(argc,argv,"pub_tf");
    // 3.解析传入的命名空间
    if (argc != 2)
    {
        ROS_ERROR("请传入正确的参数");
    } else {
        turtle_name = argv[1];
        ROS_INFO("乌龟 %s 坐标发送启动",turtle_name.c_str());
    }

    // 4.创建 ros 句柄
    ros::NodeHandle nh;
    // 5.创建订阅对象
    ros::Subscriber sub = nh.subscribe<turtlesim::Pose>(turtle_name + "/pose",1000,doPose);
    //     6.回调函数处理订阅的 pose 信息
    //         6-1.创建 TF 广播器
    //         6-2.将 pose 信息转换成 TransFormStamped
    //         6-3.发布
    // 7.spin
    ros::spin();
    return 0;
}

配置文件此处略。

4.订阅方(解析坐标信息并生成速度信息)

/*  
    订阅 turtle1 和 turtle2 的 TF 广播信息,查找并转换时间最近的 TF 信息
    将 turtle1 转换成相对 turtle2 的坐标,在计算线速度和角速度并发布

    实现流程:
        1.包含头文件
        2.初始化 ros 节点
        3.创建 ros 句柄
        4.创建 TF 订阅对象
        5.处理订阅到的 TF
        6.spin

*/
//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "geometry_msgs/TransformStamped.h"
#include "geometry_msgs/Twist.h"

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ros 节点
    ros::init(argc,argv,"sub_TF");
    // 3.创建 ros 句柄
    ros::NodeHandle nh;
    // 4.创建 TF 订阅对象
    tf2_ros::Buffer buffer;
    tf2_ros::TransformListener listener(buffer);
    // 5.处理订阅到的 TF

    // 需要创建发布 /turtle2/cmd_vel 的 publisher 对象

    ros::Publisher pub = nh.advertise<geometry_msgs::Twist>("/turtle2/cmd_vel",1000);

    ros::Rate rate(10);
    while (ros::ok())
    {
        try
        {
            //5-1.先获取 turtle1 相对 turtle2 的坐标信息
            geometry_msgs::TransformStamped tfs = buffer.lookupTransform("turtle2","turtle1",ros::Time(0));

            //5-2.根据坐标信息生成速度信息 -- geometry_msgs/Twist.h
            geometry_msgs::Twist twist;
            twist.linear.x = 0.5 * sqrt(pow(tfs.transform.translation.x,2) + pow(tfs.transform.translation.y,2));
            twist.angular.z = 4 * atan2(tfs.transform.translation.y,tfs.transform.translation.x);

            //5-3.发布速度信息 -- 需要提前创建 publish 对象
            pub.publish(twist);
        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("错误提示:%s",e.what());
        }



        rate.sleep();
        // 6.spin
        ros::spinOnce();
    }

    return 0;
}

配置文件此处略。

5.运行

使用 launch 文件组织需要运行的节点,内容示例如下:

<!--
    tf2 实现小乌龟跟随案例
-->
<launch>
    <!-- 启动乌龟节点与键盘控制节点 -->
    <node pkg="turtlesim" type="turtlesim_node" name="turtle1" output="screen" />
    <node pkg="turtlesim" type="turtle_teleop_key" name="key_control" output="screen"/>
    <!-- 启动创建第二只乌龟的节点 -->
    <node pkg="demo_tf2_test" type="Test01_Create_Turtle2" name="turtle2" output="screen" />
    <!-- 启动两个坐标发布节点 -->
    <node pkg="demo_tf2_test" type="Test02_TF2_Caster" name="caster1" output="screen" args="turtle1" />
    <node pkg="demo_tf2_test" type="Test02_TF2_Caster" name="caster2" output="screen" args="turtle2" />
    <!-- 启动坐标转换节点 -->
    <node pkg="demo_tf2_test" type="Test03_TF2_Listener" name="listener" output="screen" />
</launch>

方案B:Python实现

1.创建功能包

创建项目功能包依赖于

tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs、turtlesim

2.服务客户端(生成乌龟)

#! /usr/bin/env python
"""  
    调用 service 服务在窗体指定位置生成一只乌龟
    流程:
        1.导包
        2.初始化 ros 节点
        3.创建服务客户端
        4.等待服务启动
        5.创建请求数据
        6.发送请求并处理响应
"""
#1.导包
import rospy
from turtlesim.srv import Spawn, SpawnRequest, SpawnResponse

if __name__ == "__main__":
    # 2.初始化 ros 节点
    rospy.init_node("turtle_spawn_p")
    # 3.创建服务客户端
    client = rospy.ServiceProxy("/spawn",Spawn)
    # 4.等待服务启动
    client.wait_for_service()
    # 5.创建请求数据
    req = SpawnRequest()
    req.x = 1.0
    req.y = 1.0
    req.theta = 3.14
    req.name = "turtle2"
    # 6.发送请求并处理响应
    try:
        response = client.call(req)
        rospy.loginfo("乌龟创建成功,名字是:%s",response.name)
    except Exception as e:
        rospy.loginfo("服务调用失败....")

权限设置以及配置文件此处略。

3.发布方(发布两只乌龟的坐标信息)

#! /usr/bin/env python
"""  
    该文件实现:需要订阅 turtle1 和 turtle2 的 pose,然后广播相对 world 的坐标系信息

    注意: 订阅的两只 turtle,除了命名空间(turtle1 和 turtle2)不同外,
          其他的话题名称和实现逻辑都是一样的,
          所以我们可以将所需的命名空间通过 args 动态传入

    实现流程:
        1.导包
        2.初始化 ros 节点
        3.解析传入的命名空间
        4.创建订阅对象
        5.回调函数处理订阅的 pose 信息
            5-1.创建 TF 广播器
            5-2.将 pose 信息转换成 TransFormStamped
            5-3.发布
        6.spin
"""
# 1.导包
import rospy
import sys
from turtlesim.msg import Pose
from geometry_msgs.msg import TransformStamped
import tf2_ros
import tf_conversions

turtle_name = ""

def doPose(pose):
    # rospy.loginfo("x = %.2f",pose.x)
    #1.创建坐标系广播器
    broadcaster = tf2_ros.TransformBroadcaster()
    #2.将 pose 信息转换成 TransFormStamped
    tfs = TransformStamped()
    tfs.header.frame_id = "world"
    tfs.header.stamp = rospy.Time.now()

    tfs.child_frame_id = turtle_name
    tfs.transform.translation.x = pose.x
    tfs.transform.translation.y = pose.y
    tfs.transform.translation.z = 0.0

    qtn = tf_conversions.transformations.quaternion_from_euler(0, 0, pose.theta)
    tfs.transform.rotation.x = qtn[0]
    tfs.transform.rotation.y = qtn[1]
    tfs.transform.rotation.z = qtn[2]
    tfs.transform.rotation.w = qtn[3]

    #3.广播器发布 tfs
    broadcaster.sendTransform(tfs)


if __name__ == "__main__":
    # 2.初始化 ros 节点
    rospy.init_node("sub_tfs_p")
    # 3.解析传入的命名空间
    rospy.loginfo("-------------------------------%d",len(sys.argv))
    if len(sys.argv) < 2:
        rospy.loginfo("请传入参数:乌龟的命名空间")
    else:
        turtle_name = sys.argv[1]
    rospy.loginfo("///乌龟:%s",turtle_name)

    rospy.Subscriber(turtle_name + "/pose",Pose,doPose)
    #     4.创建订阅对象
    #     5.回调函数处理订阅的 pose 信息
    #         5-1.创建 TF 广播器
    #         5-2.将 pose 信息转换成 TransFormStamped
    #         5-3.发布
    #     6.spin
    rospy.spin()

权限设置以及配置文件此处略。

4.订阅方(解析坐标信息并生成速度信息)

#! /usr/bin/env python
"""  
    订阅 turtle1 和 turtle2 的 TF 广播信息,查找并转换时间最近的 TF 信息
    将 turtle1 转换成相对 turtle2 的坐标,在计算线速度和角速度并发布

    实现流程:
        1.导包
        2.初始化 ros 节点
        3.创建 TF 订阅对象
        4.处理订阅到的 TF
            4-1.查找坐标系的相对关系
            4-2.生成速度信息,然后发布
"""
# 1.导包
import rospy
import tf2_ros
from geometry_msgs.msg import TransformStamped, Twist
import math

if __name__ == "__main__":
    # 2.初始化 ros 节点
    rospy.init_node("sub_tfs_p")
    # 3.创建 TF 订阅对象
    buffer = tf2_ros.Buffer()
    listener = tf2_ros.TransformListener(buffer)
    # 4.处理订阅到的 TF
    rate = rospy.Rate(10)
    # 创建速度发布对象
    pub = rospy.Publisher("/turtle2/cmd_vel",Twist,queue_size=1000)
    while not rospy.is_shutdown():

        rate.sleep()
        try:
            #def lookup_transform(self, target_frame, source_frame, time, timeout=rospy.Duration(0.0)):
            trans = buffer.lookup_transform("turtle2","turtle1",rospy.Time(0))
            # rospy.loginfo("相对坐标:(%.2f,%.2f,%.2f)",
            #             trans.transform.translation.x,
            #             trans.transform.translation.y,
            #             trans.transform.translation.z
            #             )   
            # 根据转变后的坐标计算出速度和角速度信息
            twist = Twist()
            # 间距 = x^2 + y^2  然后开方
            twist.linear.x = 0.5 * math.sqrt(math.pow(trans.transform.translation.x,2) + math.pow(trans.transform.translation.y,2))
            twist.angular.z = 4 * math.atan2(trans.transform.translation.y, trans.transform.translation.x)

            pub.publish(twist)

        except Exception as e:
            rospy.logwarn("警告:%s",e)

权限设置以及配置文件此处略。

5.运行

使用 launch 文件组织需要运行的节点,内容示例如下:

<launch>
    <node pkg="turtlesim" type="turtlesim_node" name="turtle1" output="screen" />
    <node pkg="turtlesim" type="turtle_teleop_key" name="key_control" output="screen"/>

    <node pkg="demo06_test_flow_p" type="test01_turtle_spawn_p.py" name="turtle_spawn" output="screen"/>

    <node pkg="demo06_test_flow_p" type="test02_turtle_tf_pub_p.py" name="tf_pub1" args="turtle1" output="screen"/>
    <node pkg="demo06_test_flow_p" type="test02_turtle_tf_pub_p.py" name="tf_pub2" args="turtle2" output="screen"/>
    <node pkg="demo06_test_flow_p" type="test03_turtle_tf_sub_p.py" name="tf_sub" output="screen"/>

</launch>

实现的效果如下:

Reference

http://www.autolabor.com.cn/book/ROSTutorials/di-2-zhang-ros-jia-gou-she-ji/23-fu-wu-tong-xin/224-fu-wu-tong-xin-zi-ding-yi-srv-diao-yong-b-python.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/397591.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

sqli-labs靶场实战

sqli-labs靶场实战 &#xff08;手工&#xff09;SQL注入基本步骤&#xff1a; 第一步&#xff1a;注入点测试 第二步&#xff1a;查询字段数 第三步&#xff1a;判断回显位 第四步&#xff1a;查询数据库的基本信息 第五步&#xff1a;爆数据库名 第六步&#xff1a;爆数据库…

ROS云课使用CoCubeSim案例

源码压缩包&#xff1a;https://gitcode.net/ZhangRelay/cocubesim打开蓝桥ROS云课&#xff1a;下载cocubesim压缩包&#xff1a;https://gitcode.net/ZhangRelay/cocubesim.git注意文件路径&#xff0c;home文件夹下的code文件夹里面。解压缩&#xff1a;tar -xf cocubesim/co…

黑马Linux笔记03【su、sudo、groupadd、useradd、usermod、userdel、getent、chmod、chown】

资源 视频地址&#xff1a;黑马-新版Linux快速入门到精通资源下载&#xff1a;https://pan.baidu.com/s/1zExrsk09QVm3mpqaPTqe_g?pwd6666&#xff0c;提取码&#xff1a;6666笔记 黑马Linux笔记01【安装VMware Workstation、安装CentOS7、远程连接Linux系统、Win10配置WSL(Ub…

机器学习算法: Logistic 回归 详解

动动发财的小手&#xff0c;点个赞吧&#xff01; 1. 导读 逻辑回归是在因变量为二元时进行的回归分析。它用于描述数据并解释一个因二元变量与一个或多个名义、有序、区间或比率水平变量之间的关系。二元或二项式 Logistic 回归可以理解为处理其中因变量的观察结果只能是二元的…

Mac电脑,python+appium+安卓模拟器使用步骤

1、第一步&#xff0c;环境搭建&#xff0c;参考这位博主的文章&#xff0c;很齐全 https://blog.csdn.net/qq_44757414/article/details/128142859 我在最后一步安装appium-doctor的时候&#xff0c;提示权限不足&#xff0c;换成sudo appium-doctor即可 2、第二步&#xff0…

Discuz X3.1 QQ互联登陆报错解决方法

安装X3.1后QQ互联登陆出现(1054) Unknown column conuintoken in field list&#xff0c;具体截图如下&#xff1a; 原因是用QQ登陆的时候是把你的账号信息写入数据表common_member_connect中的&#xff0c;而这个语句中有conuintoken 这个字段&#xff0c;但数据表common_mem…

【Java基础】10分钟看懂Java NIO

一、IO概述IO的操作方式通常分为几种:同步阻塞BIO、同步非阻塞NIO、异步非阳塞AIO1、在JDK1.4之前&#xff0c;我们建立网络连接的时候采用的是 BIO 模式。2、Java NIO(New IO或Non Blocking IO) 是从Java 1.4版本开始引入的一个新的IOAPI&#xff0c;可以替代标准的Java IO AP…

跨域问题解决方案

目录 1.同源策略 2.解决方案(后端) (1)在后端方法添加CrossOrigin (2)添加CORS过滤器 (3)实现WebMvcConfigure接口&#xff0c;重写addCorsMappings方法 3.解决方案(前端) (1)前端配置代理 1.同源策略 同源策略&#xff08;Same origin policy&#xff09;是一种约定&am…

代码随想录算法训练营day53 | 动态规划之子序列 1143.最长公共子序列 1035.不相交的线 53. 最大子序和

day531143.最长公共子序列1.确定dp数组&#xff08;dp table&#xff09;以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例推导dp数组1035.不相交的线53. 最大子序和1.确定dp数组&#xff08;dp table&#xff09;以及下标的含义2.确定递推公式3.dp数组如何…

【深入理解 线程池】

深入理解 线程池介绍源码学习线程池的类继承体系ThreadPoolExector核心数据结构核心配置参数线程池的执行流程如图&#xff1a;线程池的优雅关闭线程池的生命周期正确关闭线程池的步骤任务的提交过程分析任务的执行过程shutdonw() 与任务执行过程综合分析shutdonwNow() 与任务执…

python3.6 处理报错free(): invalid pointer

在运行脚本的时候遇到了这个报错&#xff0c;我在笔记本的win10 python3.7上正常运行&#xff0c;把程序考到服务器报了这个错&#xff0c;free(): invalid pointer 脚本里写了异常处理&#xff0c;用的是纯净的虚拟环境&#xff0c;所以我感觉问题是出在系统环境上 在网上搜…

Linux:tcp socket客户端和服务器端代码

服务器端代码&#xff1a; #include <stdlib.h> #include <stdio.h> #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <string.h> #include <arpa/inet.h> #include <sys/un.h> #include <sy…

手工数据采集耗时耗力?Smartbi数据填报实现数据收集分析自动化

企业在日常经营管理过程中&#xff0c;往往需要收集很多内外部的信息&#xff0c;清洗整理后再进行存储、分析、呈现、决策支持等各种作业&#xff0c;如何高效收集结构化数据是企业管理者经常要面对的问题。传统手工的数据采集方式不仅耗费了大量人力时间成本&#xff0c;还容…

爽,我终于掌握了selenium图片滑块验证码

因为种种原因没能实现愿景的目标&#xff0c;在这里记录一下中间结果&#xff0c;也算是一个收场吧。这篇文章主要是用selenium解决滑块验证码的个别案列。 思路&#xff1a; 用selenium打开浏览器指定网站 将残缺块图片和背景图片下载到本地 对比两张图片的相似地方&#x…

【含源码】用python做游戏有多简单好玩

有很多同学问我还有其他什么小游戏吗&#xff0c;游戏是怎么做的&#xff0c;难不难。我就用两篇文章来介绍一下&#xff0c;如何使用Python做游戏。 兔子与灌 俄罗斯方块 休闲五子棋 走迷宫 推箱子 消消乐 超多小游戏玩转不停↓ 更多小游戏可以评论区讨论哦&#xff0c;喜欢…

C中AES_cbc_encrypt加密对应java中的解密

前言知识&#xff1a; 1.AES&#xff08;Advanced Encryption Standard&#xff09;高级加密标准&#xff0c;作为分组密码&#xff08;把明文分成一组一组的&#xff0c;每组长度相等&#xff0c;每次加密一组数据&#xff0c;直到加密完整个明文&#xff09;。 2.在AES标准…

C#基础教程12 数组

文章目录 C# 数组(Array)C# 中的数组声明数组初始化数组赋值给数组访问数组元素C# 数组细节C# 数组(Array) 数组是一个存储相同类型元素的固定大小的顺序集合。数组是用来存储数据的集合,通常认为数组是一个同一类型变量的集合。 声明数组变量并不是声明 number0、number1…

【设计模式】工厂模式

工厂模式 所谓工厂&#xff0c;顾名思义&#xff0c;就是创建出一类相似的产品的&#xff0c;工厂模式可以帮我们创建各个复杂/简单对象。属于创建型模式。 工厂模式分为三类: 简单工厂工厂方法抽象工厂 简单工厂 比方说我们需要根据配置文件去解析配置&#xff0c;不同后…

html5播放器禁止拖拽、视频禁止拖动的实例

阿酷TONY / 2023-3-8 / 长沙html5播放器禁止拖拽功能,常用于场景&#xff1a;企业培训、在线教学内容禁止学员拖动视频进行观看。应用代码实例&#xff1a;<div id"player"></div> <script src"//player.polyv.net/script/player.js">&l…

pytest初识

一、单元测试框架 &#xff08;1&#xff09;什么是单元测试框架&#xff1f; 单元测试是指在软件开发中&#xff0c;针对软件的最小单元&#xff08;函数、方法&#xff09;进行正确性的检查测试 &#xff08;2&#xff09;单元测试框架 java&#xff1a;junit和testng pytho…