【算法之旅】初识数据结构与算法

news2025/1/23 12:17:45

请添加图片描述
一名软件工程专业学生的算法之旅,记录自己从零开始学习数据结构与算法,从小白的视角学习数据结构:数组、对象/结构、字符串、队列、栈、树、图、堆、平衡树/线段树等,学习算法:枚举、排序、搜索、计数、分治策略、动态规划、贪心、回溯、图论、数论、字符串算法等,欢迎加入我,一起来学吧!

初识数据结构与算法

    • 1. 什么是算法?
    • 2. 什么是数据结构?
    • 3. 二分查找
      • 二分查找(基础版)
      • 二分查找(提升版)
      • 我们来思考:如何衡量算法的好坏?
        • 时间复杂度
        • 如何表示时间复杂度呢?
      • 二分查找(平衡版)
      • 二分查找(Java 版)
      • 二分查找(Leftmost 与 Rightmost)

1. 什么是算法?

定义: 在数学和计算机科学领域,算法是一系列有限的严谨指令,通常用于解决一类特定问题或执行计算,不正式的说,算法就是任何定义优良的计算过程:接收一些值作为输入,在有限的时间内,产生一些值作为输出。

In mathematics and computer science, an algorithm is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation.

Informally, an algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output in a finite amount of time.

或者 我们也可以说:算法是解决问题的方法与过程

2. 什么是数据结构?

定义: 在计算机科学领域,数据结构是一种数据组织、管理和存储格式,通常被选择用来高效访问数据,数据结构是一种存储和组织数据的方式,旨在便于访问和修改。

In computer science, a data structure is a data organization, management, and storage format that is usually chosen for efficient access to data. A data structure is a way to store and organize data in order to facilitate access and modifications

接下来我们通过对一个非常著名的二分查找算法的学习来认识一下算法。

3. 二分查找

二分查找算法也称折半查找,是一种非常高效的工作于有序数组的查找算法(后续还会学习更多的查找算法)。

二分查找(基础版)

需求:在有序数组 A A A 内,查找值 t a r g e t target target

  • 如果找到返回索引
  • 如果找不到返回 − 1 -1 1
算法描述
前提给定一个内含 n n n 个元素的有序数组 A A A,满足 A 0 ≤ A 1 ≤ A 2 ≤ ⋯ ≤ A n − 1 A_{0}\leq A_{1}\leq A_{2}\leq \cdots \leq A_{n-1} A0A1A2An1,一个待查值 t a r g e t target target
1设置 i = 0 i=0 i=0 j = n − 1 j=n-1 j=n1
2如果 i > j i \gt j i>j,结束查找,没找到
3设置 m = f l o o r ( i + j 2 ) m = floor(\frac {i+j}{2}) m=floor(2i+j) m m m 为中间索引, f l o o r floor floor 是向下取整( ≤ i + j 2 \leq \frac {i+j}{2} 2i+j 的最小整数)
4如果 t a r g e t < A m target < A_{m} target<Am 设置 j = m − 1 j = m - 1 j=m1,跳到第2步
5如果 A m < t a r g e t A_{m} < target Am<target 设置 i = m + 1 i = m + 1 i=m+1,跳到第2步
6如果 A m = t a r g e t A_{m} = target Am=target,结束查找,找到了

代码实现:

public static int binarySearch(int[] a, int target) {
    int i = 0, j = a.length - 1;
    while (i <= j) {
        int m = (i + j) >>> 1;
        if (target < a[m]) {			// 在左边
            j = m - 1;
        } else if (a[m] < target) {		// 在右边
            i = m + 1;
        } else {
            return m;
        }
    }
    return -1;
}
  • i , j i,j i,j 对应着搜索区间 [ 0 , a . l e n g t h − 1 ] [0,a.length-1] [0,a.length1](注意是闭合的区间), i < = j i<=j i<=j 意味着搜索区间内还有未比较的元素, i , j i,j i,j 指向的元素也可能是比较的目标
    • 思考:如果不加 i = = j i==j i==j 行不行?
    • 回答:不行,因为这意味着 i , j i,j i,j 指向的元素会漏过比较
  • m m m 对应着中间位置,中间位置左边和右边的元素可能不相等(差一个),不会影响结果
  • 如果某次未找到,那么缩小后的区间内不包含 m m m

二分查找(提升版)

首先我们给出另一种写法如下

public static int binarySearch(int[] a, int target) {
    int i = 0, j = a.length;
    while (i < j) {
        int m = (i + j) >>> 1;
        if (target < a[m]) {			// 在左边
            j = m;
        } else if (a[m] < target) {		// 在右边
            i = m + 1;
        } else {
            return m;
        }
    }
    return -1;
}
  • i , j i,j i,j 对应着搜索区间 [ 0 , a . l e n g t h ) [0,a.length) [0,a.length)(注意是左闭右开的区间), i < j i<j i<j 意味着搜索区间内还有未比较的元素, j j j 指向的一定不是查找目标
    • 思考:为啥这次不加 i = = j i==j i==j 的条件了?
    • 回答:这回 j j j 指向的不是查找目标,如果还加 i = = j i==j i==j 条件,就意味着 j j j 指向的还会再次比较,找不到时,会死循环
  • 如果某次要缩小右边界,那么 j = m j=m j=m,因为此时的 m m m 已经不是查找目标了

我们来思考:如何衡量算法的好坏?

时间复杂度

下面的查找算法也能得出与之前二分查找一样的结果,那你能说出它差在哪里吗?

public static int search(int[] a, int k) {
    for (
        int i = 0;
        i < a.length;
        i++
    ) {
        if (a[i] == k) {
            return i;
        }
    }
    return -1;
}

考虑最坏情况下(没找到)例如 [1,2,3,4] 查找 5

  • int i = 0 只执行一次
  • i < a.length 受数组元素个数 n n n 的影响,比较 n + 1 n+1 n+1
  • i++ 受数组元素个数 n n n 的影响,自增 n n n
  • a[i] == k 受元素个数 n n n 的影响,比较 n n n
  • return -1,执行一次

粗略认为每行代码执行时间是 t t t,假设 n = 4 n=4 n=4 那么

  • 总执行时间是 ( 1 + 4 + 1 + 4 + 4 + 1 ) ∗ t = 15 t (1+4+1+4+4+1)*t = 15t (1+4+1+4+4+1)t=15t
  • 可以推导出更一般地公式为, T = ( 3 ∗ n + 3 ) t T = (3*n+3)t T=(3n+3)t

如果套用二分查找算法,还是 [1,2,3,4] 查找 5

public static int binarySearch(int[] a, int target) {
    int i = 0, j = a.length - 1;
    while (i <= j) {
        int m = (i + j) >>> 1;
        if (target < a[m]) {			// 在左边
            j = m - 1;
        } else if (a[m] < target) {		// 在右边
            i = m + 1;
        } else {
            return m;
        }
    }
    return -1;
}
  • int i = 0, j = a.length - 1 各执行 1 次

  • i <= j 比较 f l o o r ( log ⁡ 2 ( n ) + 1 ) floor(\log_{2}(n)+1) floor(log2(n)+1) 再加 1 次

  • (i + j) >>> 1 计算 f l o o r ( log ⁡ 2 ( n ) + 1 ) floor(\log_{2}(n)+1) floor(log2(n)+1)

  • 接下来 if() else if() else 会执行 3 ∗ f l o o r ( log ⁡ 2 ( n ) + 1 ) 3* floor(\log_{2}(n)+1) 3floor(log2(n)+1) 次,分别为

    • if 比较
    • else if 比较
    • else if 比较成立后的赋值语句
  • return -1,执行一次

结果:

  • 总执行时间为 ( 2 + ( 1 + 3 ) + 3 + 3 ∗ 3 + 1 ) ∗ t = 19 t (2 + (1+3) + 3 + 3 * 3 +1)*t = 19t (2+(1+3)+3+33+1)t=19t
  • 更一般地公式为 ( 4 + 5 ∗ f l o o r ( log ⁡ 2 ( n ) + 1 ) ) ∗ t (4 + 5 * floor(\log_{2}(n)+1))*t (4+5floor(log2(n)+1))t

注意:

左侧未找到和右侧未找到结果不一样,这里不做分析

两个算法比较,可以看到 n n n 在较小的时候,二者花费的次数差不多

image-20230308200430278

但随着 n n n 越来越大,比如说 n = 1000 n=1000 n=1000 时,用二分查找算法(红色)也就是 54 t 54t 54t,而蓝色算法则需要 3003 t 3003t 3003t

image-20230308200445312

画图采用的是 Desmos | 图形计算器

计算机科学中,时间复杂度是用来衡量:一个算法的执行,随数据规模增大,而增长的时间成本

  • 不依赖于环境因素

如何表示时间复杂度呢?

  • 假设算法要处理的数据规模是 n n n,代码总的执行行数用函数 f ( n ) f(n) f(n) 来表示,例如:

    • 线性查找算法的函数 f ( n ) = 3 ∗ n + 3 f(n) = 3*n + 3 f(n)=3n+3
    • 二分查找算法的函数 f ( n ) = ( f l o o r ( l o g 2 ( n ) ) + 1 ) ∗ 5 + 4 f(n) = (floor(log_2(n)) + 1) * 5 + 4 f(n)=(floor(log2(n))+1)5+4
  • 为了对 f ( n ) f(n) f(n) 进行化简,应当抓住主要矛盾,找到一个变化趋势与之相近的表示法

O O O 表示法

image-20230308200544520

其中

  • c , c 1 , c 2 c, c_1, c_2 c,c1,c2 都为一个常数
  • f ( n ) f(n) f(n) 是实际执行代码行数与 n 的函数
  • g ( n ) g(n) g(n) 是经过化简,变化趋势与 f ( n ) f(n) f(n) 一致的 n 的函数

渐进上界

渐进上界(asymptotic upper bound):从某个常数 n 0 n_0 n0开始, c ∗ g ( n ) c*g(n) cg(n) 总是位于 f ( n ) f(n) f(n) 上方,那么记作 O ( g ( n ) ) O(g(n)) O(g(n))

  • 代表算法执行的最差情况

例1

  • f ( n ) = 3 ∗ n + 3 f(n) = 3*n+3 f(n)=3n+3
  • g ( n ) = n g(n) = n g(n)=n
  • c = 4 c=4 c=4,在 n 0 = 3 n_0=3 n0=3 之后, g ( n ) g(n) g(n) 可以作为 f ( n ) f(n) f(n) 的渐进上界,因此表示法写作 O ( n ) O(n) O(n)

例2

  • f ( n ) = 5 ∗ f l o o r ( l o g 2 ( n ) ) + 9 f(n) = 5*floor(log_2(n)) + 9 f(n)=5floor(log2(n))+9
  • g ( n ) = l o g 2 ( n ) g(n) = log_2(n) g(n)=log2(n)
  • O ( l o g 2 ( n ) ) O(log_2(n)) O(log2(n))

已知 f ( n ) f(n) f(n) 来说,求 g ( n ) g(n) g(n)

  • 表达式中相乘的常量,可以省略,如
    • f ( n ) = 100 ∗ n 2 f(n) = 100*n^2 f(n)=100n2 中的 100 100 100
  • 多项式中数量规模更小(低次项)的表达式,如
    • f ( n ) = n 2 + n f(n)=n^2+n f(n)=n2+n 中的 n n n
    • f ( n ) = n 3 + n 2 f(n) = n^3 + n^2 f(n)=n3+n2 中的 n 2 n^2 n2
  • 不同底数的对数,渐进上界可以用一个对数函数 log ⁡ n \log n logn 表示
    • 例如: l o g 2 ( n ) log_2(n) log2(n) 可以替换为 l o g 10 ( n ) log_{10}(n) log10(n),因为 l o g 2 ( n ) = l o g 10 ( n ) l o g 10 ( 2 ) log_2(n) = \frac{log_{10}(n)}{log_{10}(2)} log2(n)=log10(2)log10(n),相乘的常量 1 l o g 10 ( 2 ) \frac{1}{log_{10}(2)} log10(2)1 可以省略
  • 类似的,对数的常数次幂可省略
    • 如: l o g ( n c ) = c ∗ l o g ( n ) log(n^c) = c * log(n) log(nc)=clog(n)

常见大 O O O 表示法

image-20230308200605870

按时间复杂度从低到高

  • 黑色横线 O ( 1 ) O(1) O(1),常量时间,意味着算法时间并不随数据规模而变化
  • 绿色 O ( l o g ( n ) ) O(log(n)) O(log(n)),对数时间
  • 蓝色 O ( n ) O(n) O(n),线性时间,算法时间与数据规模成正比
  • 橙色 O ( n ∗ l o g ( n ) ) O(n*log(n)) O(nlog(n)),拟线性时间
  • 红色 O ( n 2 ) O(n^2) O(n2) 平方时间
  • 黑色朝上 O ( 2 n ) O(2^n) O(2n) 指数时间
  • 没画出来的 O ( n ! ) O(n!) O(n!)

渐进下界

渐进下界(asymptotic lower bound):从某个常数 n 0 n_0 n0开始, c ∗ g ( n ) c*g(n) cg(n) 总是位于 f ( n ) f(n) f(n) 下方,那么记作 Ω ( g ( n ) ) \Omega(g(n)) Ω(g(n))

渐进紧界

渐进紧界(asymptotic tight bounds):从某个常数 n 0 n_0 n0开始, f ( n ) f(n) f(n) 总是在 c 1 ∗ g ( n ) c_1*g(n) c1g(n) c 2 ∗ g ( n ) c_2*g(n) c2g(n) 之间,那么记作 Θ ( g ( n ) ) \Theta(g(n)) Θ(g(n))

空间复杂度

与时间复杂度类似,一般也使用大 O O O 表示法来衡量:一个算法执行随数据规模增大,而增长的额外空间成本

public static int binarySearchBasic(int[] a, int target) {
    int i = 0, j = a.length - 1;    // 设置指针和初值
    while (i <= j) {                // i~j 范围内有东西
        int m = (i + j) >>> 1;
        if(target < a[m]) {         // 目标在左边
            j = m - 1;
        } else if (a[m] < target) { // 目标在右边
            i = m + 1;
        } else {                    // 找到了
            return m;
        }
    }
    return -1;
}

二分查找性能

下面分析二分查找算法的性能

时间复杂度

  • 最坏情况: O ( log ⁡ n ) O(\log n) O(logn)
  • 最好情况:如果待查找元素恰好在数组中央,只需要循环一次 O ( 1 ) O(1) O(1)

空间复杂度

  • 需要常数个指针 i , j , m i,j,m i,j,m,因此额外占用的空间是 O ( 1 ) O(1) O(1)

二分查找(平衡版)

public static int binarySearchBalance(int[] a, int target) {
    int i = 0, j = a.length;
    while (1 < j - i) {
        int m = (i + j) >>> 1;
        if (target < a[m]) {
            j = m;
        } else {
            i = m;
        }
    }
    return (a[i] == target) ? i : -1;
}

思想:

  1. 左闭右开的区间, i i i 指向的可能是目标,而 j j j 指向的不是目标
  2. 不奢望循环内通过 m m m 找出目标, 缩小区间直至剩 1 个, 剩下的这个可能就是要找的(通过 i i i
    • j − i > 1 j - i > 1 ji>1 的含义是,在范围内待比较的元素个数 > 1
  3. 改变 i i i 边界时,它指向的可能是目标,因此不能 m + 1 m+1 m+1
  4. 循环内的平均比较次数减少了
  5. 时间复杂度 Θ ( l o g ( n ) ) \Theta(log(n)) Θ(log(n))

二分查找(Java 版)

private static int binarySearch0(long[] a, int fromIndex, int toIndex, long key) {
    int low = fromIndex;
    int high = toIndex - 1;

    while (low <= high) {
        int mid = (low + high) >>> 1;
        long midVal = a[mid];

        if (midVal < key)
            low = mid + 1;
        else if (midVal > key)
            high = mid - 1;
        else
            return mid; // key found
    }
    return -(low + 1);  // key not found.
}
  • 例如 [ 1 , 3 , 5 , 6 ] [1,3,5,6] [1,3,5,6] 要插入 2 2 2 那么就是找到一个位置,这个位置左侧元素都比它小
    • 等循环结束,若没找到,low 左侧元素肯定都比 target 小,因此 low 即插入点
  • 插入点取负是为了与找到情况区分
  • -1 是为了把索引 0 位置的插入点与找到的情况进行区分

二分查找(Leftmost 与 Rightmost)

有时我们希望返回的是最左侧的重复元素,如果用 Basic 二分查找

  • 对于数组 [ 1 , 2 , 3 , 4 , 4 , 5 , 6 , 7 ] [1, 2, 3, 4, 4, 5, 6, 7] [1,2,3,4,4,5,6,7],查找元素4,结果是索引3

  • 对于数组 [ 1 , 2 , 4 , 4 , 4 , 5 , 6 , 7 ] [1, 2, 4, 4, 4, 5, 6, 7] [1,2,4,4,4,5,6,7],查找元素4,结果也是索引3,并不是最左侧的元素

public static int binarySearchLeftmost1(int[] a, int target) {
    int i = 0, j = a.length - 1;
    int candidate = -1;
    while (i <= j) {
        int m = (i + j) >>> 1;
        if (target < a[m]) {
            j = m - 1;
        } else if (a[m] < target) {
            i = m + 1;
        } else {
            candidate = m; // 记录候选位置
            j = m - 1;     // 继续向左
        }
    }
    return candidate;
}

如果希望返回的是最右侧元素

public static int binarySearchRightmost1(int[] a, int target) {
    int i = 0, j = a.length - 1;
    int candidate = -1;
    while (i <= j) {
        int m = (i + j) >>> 1;
        if (target < a[m]) {
            j = m - 1;
        } else if (a[m] < target) {
            i = m + 1;
        } else {
            candidate = m; // 记录候选位置
            i = m + 1;	   // 继续向右
        }
    }
    return candidate;
}

应用

对于 Leftmost 与 Rightmost,可以返回一个比 -1 更有用的值

Leftmost 改为

public static int binarySearchLeftmost(int[] a, int target) {
    int i = 0, j = a.length - 1;
    while (i <= j) {
        int m = (i + j) >>> 1;
        if (target <= a[m]) {
            j = m - 1;
        } else {
            i = m + 1;
        }
    }
    return i; 
}
  • leftmost 返回值的另一层含义: < t a r g e t \lt target <target 的元素个数
  • 小于等于中间值,都要向左找

Rightmost 改为

public static int binarySearchRightmost(int[] a, int target) {
    int i = 0, j = a.length - 1;
    while (i <= j) {
        int m = (i + j) >>> 1;
        if (target < a[m]) {
            j = m - 1;
        } else {
            i = m + 1;
        }
    }
    return i - 1;
}
  • 大于等于中间值,都要向右找

几个名词

image-20230308200720474

范围查询

  • 查询 x < 4 x \lt 4 x<4 0.. l e f t m o s t ( 4 ) − 1 0 .. leftmost(4) - 1 0..leftmost(4)1
  • 查询 x ≤ 4 x \leq 4 x4 0.. r i g h t m o s t ( 4 ) 0 .. rightmost(4) 0..rightmost(4)
  • 查询 4 < x 4 \lt x 4<x,$rightmost(4) + 1 … \infty $
  • 查询 4 ≤ x 4 \leq x 4x l e f t m o s t ( 4 ) . . ∞ leftmost(4) .. \infty leftmost(4)..∞
  • 查询 4 ≤ x ≤ 7 4 \leq x \leq 7 4x7 l e f t m o s t ( 4 ) . . r i g h t m o s t ( 7 ) leftmost(4) .. rightmost(7) leftmost(4)..rightmost(7)
  • 查询 4 < x < 7 4 \lt x \lt 7 4<x<7 r i g h t m o s t ( 4 ) + 1.. l e f t m o s t ( 7 ) − 1 rightmost(4)+1 .. leftmost(7)-1 rightmost(4)+1..leftmost(7)1

求排名 l e f t m o s t ( t a r g e t ) + 1 leftmost(target) + 1 leftmost(target)+1

  • t a r g e t target target 可以不存在,如: l e f t m o s t ( 5 ) + 1 = 6 leftmost(5)+1 = 6 leftmost(5)+1=6
  • t a r g e t target target 也可以存在,如: l e f t m o s t ( 4 ) + 1 = 3 leftmost(4)+1 = 3 leftmost(4)+1=3

求前任(predecessor) l e f t m o s t ( t a r g e t ) − 1 leftmost(target) - 1 leftmost(target)1

  • l e f t m o s t ( 3 ) − 1 = 1 leftmost(3) - 1 = 1 leftmost(3)1=1,前任 a 1 = 2 a_1 = 2 a1=2
  • l e f t m o s t ( 4 ) − 1 = 1 leftmost(4) - 1 = 1 leftmost(4)1=1,前任 a 1 = 2 a_1 = 2 a1=2

求后任(successor) r i g h t m o s t ( t a r g e t ) + 1 rightmost(target)+1 rightmost(target)+1

  • r i g h t m o s t ( 5 ) + 1 = 5 rightmost(5) + 1 = 5 rightmost(5)+1=5,后任 a 5 = 7 a_5 = 7 a5=7
  • r i g h t m o s t ( 4 ) + 1 = 5 rightmost(4) + 1 = 5 rightmost(4)+1=5,后任 a 5 = 7 a_5 = 7 a5=7

求最近邻居

  • 前任和后任距离更近者

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/397075.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Windows中配置docker没有hyper-v功能解决方案

&#x1f468; 作者简介&#xff1a;大家好&#xff0c;我是Taro&#xff0c;前端领域创作者 ✒️ 个人主页&#xff1a;唐璜Taro &#x1f680; 支持我&#xff1a;点赞&#x1f44d;&#x1f4dd; 评论 ⭐️收藏 文章目录前言解决步骤&#xff1a;1.新建文档2. 另存为3. 功能…

Tomcat独立部署-Nginx-1.12.2配置SSL

目录 &#x1f3c6;1. 实现思路 &#x1f3c6;2. 重启服务器 &#x1f3c6;3. proxy_pass 后地址带/和不带/的url地址显示 &#x1f3c6;4. 配置SSL证书 &#x1f3c6;5. 遇到问题 &#x1f3c6;6. 参考文章 学习完本篇博客您将掌握&#xff1a; 1、使用Tomcat配置SSL域名…

SpringMVC中的拦截器不生效的问题解决以及衍生出的WebMvcConfigurationSupport继承问题思考

文章目录SpringMVC中的拦截器不生效的问题解决WebMvcConfigurationSupport继承问题思考SpringMVC中的拦截器不生效的问题解决 过滤器代码(被Spring扫描并管理)&#xff1a; Component public class StuInterceptor implements HandlerInterceptor {Overridepublic boolean pr…

Dynamics365安装失败解决及注册编写

一、修改错误昨天登录报错今天开始返回我之前设置的断点开始重新配置&#xff0c;Reporing Services配置完成后发现dynamics365还是下载失败之后下载了一上午dynamics365就一直卡在最后的界面进度条不动索性我直接把所有环境都卸载了 连同虚拟机卸载重装终于在下午的时候dynami…

设计模式---工厂模式

目录 1. 简单工厂模式 2. 工厂方法模式 1. 简单工厂模式 简单工厂模式(Simple Factory Patterm)又称为静态工厂方法模式(Static Factory Model)&#xff0c;它属于类创建型模式。在简单工厂模式中&#xff0c;可以根据参数的不同返回不同类的实例。简单工厂模式专门定义了一…

【Nginx】Nginx的安装配置

环境说明系统&#xff1a;Centos 7一、编译安装Nginx官网下载地址nginx: download#安装依赖 [rootnginx nginx-1.22.1]# yum install gcc pcre pcre-devel zlib zlib-devel -y #从官网下载Nginx安装包&#xff0c;并进行解压、编译、安装 [rootnginx ~]# wget https://nginx.or…

【第八课】空间数据基础与处理——数据结构转化

一、前言 数据结构即指数据组织的形式,是适合于计算机存储、管理和处理的数据逻辑结构。对空间数据则是地理实体的空间排列方式和相互关系的抽象描述。它是对数据的一种理解和解释,不说明数据结构的数据是毫无用处的,不仅用户无法理解,计算机程序也不能正确地处理,对同样一组数…

【C++学习】栈 | 队列 | 优先级队列 | 反向迭代器

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《C学习》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 栈 | 队列 | 优先级队列 | 反向迭代器&#x1f63c;容器适配器&#x1f648;什么是适配器&#x1f64…

数据清洗和特征选择

数据清洗和特征选择 数据清洗和特征挖掘的工作是在灰色框中框出的部分&#xff0c;即“数据清洗>特征&#xff0c;标注数据生成>模型学习>模型应用”中的前两个步骤。 灰色框中蓝色箭头对应的是离线处理部分。主要工作是 从原始数据&#xff0c;如文本、图像或者应…

MySQL的基本语句(SELECT型)

基本MySQL语句SELECTSELECT FROM 列的别名去除重复行空值着重号算术运算符加法( )减法( - )乘法( * )除法&#xff08; / 或DIV)求模&#xff08; % 或MOD)比较运算符等于&#xff08; &#xff09;安全等于&#xff08; <> &#xff09;不等于&#xff08; ! 或 <…

WindTerm 界面/UI字体大小调节

文章目录WindTerm 界面/UI字体大小调节问题&#xff1a;解决办法&#xff1a;第一部分&#xff1a;调整编码部分字体大小第二部分&#xff1a;调整UI界面字体大小WindTerm 界面/UI字体大小调节 问题&#xff1a; 今天在使用windTerm的时候&#xff0c;发现windterm界面字体过…

MySQL基础篇1

第1章 数据库介绍 1.1 数据库概述 什么是数据库&#xff1f; 数据库就是存储数据的仓库&#xff0c;其本质是一个文件系统&#xff0c;数据按照特定的格式将数据存储起来&#xff0c;用户可以对数据库中的数据进行增加&#xff0c;修改&#xff0c;删除及查询操作。 数据库分两…

多线程的Thread 类及方法

✨个人主页&#xff1a;bit me&#x1f447; ✨当前专栏&#xff1a;Java EE初阶&#x1f447; ✨每日一语&#xff1a;海压竹枝低复举&#xff0c;风吹山角晦还明。 目 录&#x1f332;一. 线程的复杂性&#x1f334;二. Thread 类及常见方法&#x1f4d5;2.1 Thread 的常见构…

Dubbo的服务暴漏与服务发现源码详解

服务暴漏 如果配置需要刷新则根据配置优先级刷新服务配置 如果服务已经导出&#xff0c;则直接返回 是否异步导出&#xff08;全局或者服务级别配置了异步&#xff0c;则需要异步导出服务&#xff09; 服务暴漏入口DefaultModuleDeployer#exportServices private void exp…

Redis缓存穿透

缓存穿透&#xff1a; 缓存穿透说简单点就是⼤量请求的 key 根本不存在于缓存中&#xff0c;导致请求直接到了数据库上&#xff0c; 根本没有经过缓存这⼀层。举个例⼦&#xff1a;某个⿊客故意制造我们缓存中不存在的 key 发起⼤量 请求&#xff0c;导致⼤量请求落到数据库。…

http笔记

文章目录1、什么是http&#xff1f;2、http报文格式3、请求报文1、认识URL2、认识http方法3、认识header4、响应报文5、https加密机制1、什么是http&#xff1f; http是应用层最广泛使用的协议之一&#xff1b;其中浏览器获取到网页就是基于http实现的&#xff1b;http就是浏览…

Caddy2学习笔记——Caddy2反向代理docker版本的DERP中继服务器

一、个人环境概述 本人拥有一个国内云服务商的云主机和一个备案好的域名&#xff0c;通过caddy2来作为web服务器。我的云主机系统是Ubuntu。 我的云主机是公网ip&#xff0c;地址为&#xff1a;43.126.100.78&#xff1b;我备案好的域名是&#xff1a;hotgirl.com。后面的文章…

【量化交易笔记】3.实现数据库保存数据

上一节&#xff0c;我们通过下载相关的 pandas 数据保存为 本地csv文件&#xff0c;这一节将上节的数据以数据库方式保存。 数据库保存 采集数据部分前一节已做说明&#xff0c;这里就直接用采用前面的内容。这里着重说明的事数据库连接。对与 python 相连接的数据库有很多&a…

玩转Python的交互(命令行)模式

我喜欢使用Python的交互界面&#xff08;命令行模式&#xff09;来运行和调试Python代码。为什么不用PyCharm、VSCode&#xff1f;因为先入为主&#xff0c;加上我的DOS命令行的情结&#xff0c;我第一次安装使用Python就是用这种黑白界面的&#xff0c;平时写代码惯用EmEditor…

MySQL慢查询

2 慢查询 2.1 慢查询介绍 MySQL的慢查询日志是MySQL提供的一种日志记录&#xff0c;它用来记录在MySQL中响应时间超过阀值的语句&#xff0c;具体指运行时间超过long_query_time值的SQL&#xff0c;则会被记录到慢查询日志中。具体指运行时间超过long_query_time值的SQL&…