@C++ 数组
一、C++ 数组
C++ 支持数组数据结构,它可以存储一个固定大小的相同类型元素的顺序集合。数组是用来存储一系列数据,但它往往被认为是一系列相同类型的变量。
数组的声明并不是声明一个个单独的变量,比如 number0、number1、…、number99,而是声明一个数组变量,比如 numbers,然后使用 numbers[0]、numbers[1]、…、numbers[99] 来代表一个个单独的变量。数组中的特定元素可以通过索引访问。
所有的数组都是由连续的内存位置组成。最低的地址对应第一个元素,最高的地址对应最后一个元素
二、声明数组
在 C++ 中要声明一个数组,需要指定元素的类型和元素的数量,如下所示:
type arrayName [ arraySize ];
这叫做一维数组。arraySize 必须是一个大于零的整数常量,type 可以是任意有效的 C++ 数据类型。例如,要声明一个类型为 double 的包含 10 个元素的数组 balance,声明语句如下:
double balance[10];
现在 balance 是一个可用的数组,可以容纳 10 个类型为 double 的数字
三、初始化数组
在 C++ 中,可以逐个初始化数组,也可以使用一个初始化语句,如下所示:
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};
大括号 { } 之间的值的数目不能大于我们在数组声明时在方括号 [ ] 中指定的元素数目。
如果省略掉了数组的大小,数组的大小则为初始化时元素的个数。因此,如果:
double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};
将创建一个数组,它与前一个实例中所创建的数组是完全相同的。下面是一个为数组中某个元素赋值的实例:
balance[4] = 50.0;
上述的语句把数组中第五个元素的值赋为 50.0。所有的数组都是以 0 作为它们第一个元素的索引,也被称为基索引,数组的最后一个索引是数组的总大小减去 1。以下是上面所讨论的数组的的图形表示:
四、访问数组元素
数组元素可以通过数组名称加索引进行访问。元素的索引是放在方括号内,跟在数组名称的后边。例如:
double salary = balance[9];
上面的语句将把数组中第 10 个元素的值赋给 salary 变量。下面的实例使用了上述的三个概念,即,声明数组、数组赋值、访问数组:
#include <iostream>
using namespace std;
#include <iomanip>
using std::setw;
int main ()
{
int n[ 10 ]; // n 是一个包含 10 个整数的数组
// 初始化数组元素
for ( int i = 0; i < 10; i++ )
{
n[ i ] = i + 100; // 设置元素 i 为 i + 100
}
cout << "Element" << setw( 13 ) << "Value" << endl;
// 输出数组中每个元素的值
for ( int j = 0; j < 10; j++ )
{
cout << setw( 7 )<< j << setw( 13 ) << n[ j ] << endl;
}
return 0;
}
Element Value
0 100
1 101
2 102
3 103
4 104
5 105
6 106
7 107
8 108
9 109
C++ setw() 函数
C++ setw() 函数用于设置字段的宽度,语法格式如下:
setw(n)
n 表示宽度,用数字表示。
setw() 函数只对紧接着的输出产生作用。
当后面紧跟着的输出字段长度小于 n 的时候,在该字段前面用空格补齐,当输出字段长度大于 n 时,全部整体输出
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
// 开头设置宽度为 4,后面的 runoob 字符长度大于 4,所以不起作用
cout << setw(4) << "runoob" << endl;
// 中间位置设置宽度为 4,后面的 runoob 字符长度大于 4,所以不起作用
cout << "runoob" << setw(4) << "runoob" << endl;
// 开头设置间距为 14,后面 runoob 字符数为6,前面补充 8 个空格
cout << setw(14) << "runoob" << endl;
// 中间位置设置间距为 14 ,后面 runoob 字符数为6,前面补充 8 个空格
cout << "runoob" << setw(14) << "runoob" << endl;
return 0;
}
runoob
runoobrunoob
runoob
runoob runoob
setw() 默认填充的内容为空格,可以 setfill() 配合使用设置其他字符填充
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
cout << setfill('*') << setw(14) << "runoob" << endl;
return 0;
}
以上代码输出结果为:
********runoob
五、C++ 中数组详解
在 C++ 中,数组是非常重要的,我们需要了解更多有关数组的细节
5.1 多维数组
C++ 支持多维数组。多维数组声明的一般形式如下:
type name[ size1][size2]…[sizeN];
例如,下面的声明创建了一个三维 5 . 10 . 4 整型数组:
int threedim[ 5][10][4];
二维数组
多维数组最简单的形式是二维数组。一个二维数组,在本质上,是一个一维数组的列表。声明一个 x 行 y 列的二维整型数组,形式如下:
type arrayName [ x ][ y ];
其中,type 可以是任意有效的 C++ 数据类型,arrayName 是一个有效的 C++ 标识符。
一个二维数组可以被认为是一个带有 x 行和 y 列的表格。下面是一个二维数组,包含 3 行和 4 列:
初始化二维数组
多维数组可以通过在括号内为每行指定值来进行初始化。下面是一个带有 3 行 4 列的数组。
int a[3][4] = {
{0, 1, 2, 3} , /* 初始化索引号为 0 的行 */
{4, 5, 6, 7} , /* 初始化索引号为 1 的行 */
{8, 9, 10, 11} /* 初始化索引号为 2 的行 */
};
内部嵌套的括号是可选的,下面的初始化与上面是等同的:
int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};
访问二维数组元素
二维数组中的元素是通过使用下标(即数组的行索引和列索引)来访问的。例如:
int val = a[2][3];
使用嵌套循环来处理二维数组:
#include <iostream>
using namespace std;
int main ()
{
// 一个带有 5 行 2 列的数组
int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};
// 输出数组中每个元素的值
for ( int i = 0; i < 5; i++ )
for ( int j = 0; j < 2; j++ )
{
cout << "a[" << i << "][" << j << "]: ";
cout << a[i][j]<< endl;
}
return 0;
}
a[0][0]: 0
a[0][1]: 0
a[1][0]: 1
a[1][1]: 2
a[2][0]: 2
a[2][1]: 4
a[3][0]: 3
a[3][1]: 6
a[4][0]: 4
a[4][1]: 8
如上所述,可以创建任意维度的数组,但是一般情况下,我们创建的数组是一维数组和二维数组
5.2 指向数组的指针
数组名是指向数组中第一个元素的常量指针。因此,在下面的声明中:
double runoobAarray[50];
runoobAarray 是一个指向 &runoobAarray[0] 的指针,即数组 runoobAarray 的第一个元素的地址。因此,下面的程序片段把 p 赋值为 runoobAarray 的第一个元素的地址:
double *p;
double runoobAarray[10];
p = runoobAarray;
使用数组名作为常量指针是合法的,反之亦然。因此,*(runoobAarray + 4) 是一种访问 runoobAarray[4] 数据的合法方式。
一旦把第一个元素的地址存储在 p 中,您就可以使用 p、(p+1)、*(p+2) 等来访问数组元素。下面的实例演示了上面讨论到的这些概念:
#include <iostream>
using namespace std;
int main ()
{
// 带有 5 个元素的双精度浮点型数组
double runoobAarray[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};
double *p;
p = runoobAarray;
// 输出数组中每个元素的值
cout << "使用指针的数组值 " << endl;
for ( int i = 0; i < 5; i++ )
{
cout << "*(p + " << i << ") : ";
cout << *(p + i) << endl;
}
cout << "使用 runoobAarray 作为地址的数组值 " << endl;
for ( int i = 0; i < 5; i++ )
{
cout << "*(runoobAarray + " << i << ") : ";
cout << *(runoobAarray + i) << endl;
}
return 0;
}
使用指针的数组值
*(p + 0) : 1000
*(p + 1) : 2
*(p + 2) : 3.4
*(p + 3) : 17
*(p + 4) : 50
使用 runoobAarray 作为地址的数组值
*(runoobAarray + 0) : 1000
*(runoobAarray + 1) : 2
*(runoobAarray + 2) : 3.4
*(runoobAarray + 3) : 17
*(runoobAarray + 4) : 50
在上面的实例中,p 是一个指向 double 型的指针,这意味着它可以存储一个 double 类型的变量。一旦我们有了 p 中的地址,*p 将给出存储在 p 中相应地址的值,正如上面实例中所演示的
5.3 传递数组给函数
C++ 中可以通过指定不带索引的数组名来传递一个指向数组的指针。
C++ 传数组给一个函数,数组类型自动转换为指针类型,因而传的实际是地址。
如果想要在函数中传递一个一维数组作为参数,您必须以下面三种方式来声明函数形式参数,这三种声明方式的结果是一样的,因为每种方式都会告诉编译器将要接收一个整型指针。同样地,也可以传递一个多维数组作为形式参数
方式 1
形式参数是一个指针:
void myFunction(int *param)
{
.
.
.
}
方式 2
形式参数是一个已定义大小的数组:
void myFunction(int param[10])
{
.
.
.
}
式 3
形式参数是一个未定义大小的数组:
void myFunction(int param[])
{
.
.
.
}
下面这个函数,它把数组作为参数,同时还传递了另一个参数,根据所传的参数,会返回数组中各元素的平均值:
double getAverage(int arr[], int size)
{
int i, sum = 0;
double avg;
for (i = 0; i < size; ++i)
{
sum += arr[i];
}
avg = double(sum) / size;
return avg;
}
调用上面的函数,如下所示:
#include <iostream>
using namespace std;
// 函数声明
double getAverage(int arr[], int size);
int main ()
{
// 带有 5 个元素的整型数组
int balance[5] = {1000, 2, 3, 17, 50};
double avg;
// 传递一个指向数组的指针作为参数
avg = getAverage( balance, 5 ) ;
// 输出返回值
cout << "平均值是:" << avg << endl;
return 0;
}
平均值是: 214.4
就函数而言,数组的长度是无关紧要的,因为 C++ 不会对形式参数执行边界检查
5.4 从函数返回数组
C++ 不允许返回一个完整的数组作为函数的参数。但是,您可以通过指定不带索引的数组名来返回一个指向数组的指针。
如果想要从函数返回一个一维数组,必须声明一个返回指针的函数,如下:
int * myFunction()
{
.
.
.
}
另外,C++ 不支持在函数外返回局部变量的地址,除非定义局部变量为 static 变量。
现在,让我们来看下面的函数,它会生成 10 个随机数,并使用数组来返回它们,具体如下:
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
// 要生成和返回随机数的函数
int * getRandom( )
{
static int r[10];
// 设置种子
srand( (unsigned)time( NULL ) );
for (int i = 0; i < 10; ++i)
{
r[i] = rand();
cout << r[i] << endl;
}
return r;
}
// 要调用上面定义函数的主函数
int main ()
{
// 一个指向整数的指针
int *p;
p = getRandom();
for ( int i = 0; i < 10; i++ )
{
cout << "*(p + " << i << ") : ";
cout << *(p + i) << endl;
}
return 0;
}
624723190
1468735695
807113585
976495677
613357504
1377296355
1530315259
1778906708
1820354158
667126415
*(p + 0) : 624723190
*(p + 1) : 1468735695
*(p + 2) : 807113585
*(p + 3) : 976495677
*(p + 4) : 613357504
*(p + 5) : 1377296355
*(p + 6) : 1530315259
*(p + 7) : 1778906708
*(p + 8) : 1820354158
*(p + 9) : 667126415
菜鸟教程,学习记录