第十章 opengl之光照(投光物)

news2025/1/31 11:14:08

OpenGL

  • 投光物
    • 平行光
    • 点光源
      • 衰减
    • 聚光
    • 平滑/软化边缘

投光物

当前光线都是来自空间的一个点。但实际,我们有很多种类的光照,将光投射到物体的光源叫做投光物。需要讨论几种不同类型的投光物。大致为:定向光,点光源,聚光等

平行光

假设光源处于无限远处的模型时,它就被称为定向光,因为它的所有光线都有着相同的方向,它与光源的位置是没有关系的。
因为所有的光线都是平行的,所以物体与光源的相对位置是不重要的,因为对场景中每一个物体光的方向都是一致的。由于光的位置向量保持一致,场景中每个物体的光照计算将会是类似的。
定义一个光线方向向量,而不是位置向量,就可以模拟一个定向光。着色器的计算基本保持不变,可以直接使用光的direction向量而不是通过position来计算lightDir向量:

struct Light {
    // vec3 position; // 使用定向光就不再需要了
    vec3 direction;

    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
};
...
void main()
{
  vec3 lightDir = normalize(-light.direction);
  ...
}

首先对light.direction向量取反。当前使用的光照计算需求一个从片段到光源的光线方向,但我们更习惯定义定向光一个从光源触发的全局方向。所以需要对全局光照方向向量取反,来改变它的方向。
取反后,它现在是一个指向光源的方向向量了。最终的lightDir向量将和以前一样用在漫反射和镜面光计算中。

再次使用坐标系统中“箱子派对”的场景。回顾下,先定义了十个不同的箱子位置,并对每个箱子都生成了一个不同的模型矩阵,每个模型矩阵都包含了对应的局部-世界坐标变换:

for(unsigned int i = 0; i < 10; i++)
{
    glm::mat4 model;
    model = glm::translate(model, cubePositions[i]);
    float angle = 20.0f * i;
    model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
    lightingShader.setMat4("model", model);

    glDrawArrays(GL_TRIANGLES, 0, 36);
}

再定义光源的方向(方向定义为:从光源出发的方向)

lightingShader.setVec3("light.direction", -0.2f, -1.0f, -0.3f);

补充:
我们一直将光的位置和位置向量定义为vec3,但一些人会喜欢将所有的向量都定义为vec4。当我们将位置向量定义为一个vec4时,很重要的一点是要将w分量设置为1.0,这样变换和投影才能正确应用。然而,当我们定义一个方向向量为vec4的时候,我们不想让位移有任何的效果(因为它仅仅代表的是方向),所以我们将w分量设置为0.0。

方向向量就会像这样来表示:vec4(0.2f, 1.0f, 0.3f, 0.0f)。这也可以作为一个快速检测光照类型的工具:你可以检测w分量是否等于1.0,来检测它是否是光的位置向量;w分量等于0.0,则它是光的方向向量,这样就能根据这个来调整光照计算了:

if(lightVector.w == 0.0) // 注意浮点数据类型的误差
  // 执行定向光照计算
else if(lightVector.w == 1.0)
  // 根据光源的位置做光照计算(与上一节一样)

综上代码如下:

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <stb_image.h>

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include <learnopengl/shader_m.h>
#include <learnopengl/camera.h>

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);
unsigned int loadTexture(const char *path);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;

// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);

    // tell GLFW to capture our mouse
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);

    // build and compile shaders
    // -------------------------
    Shader lightingShader("5.1.light_casters.vs", "5.1.light_casters.fs");
    Shader lightCubeShader("5.1.light_cube.vs", "5.1.light_cube.fs");

    // set up vertex data (and buffer(s)) and configure vertex attributes
    // ------------------------------------------------------------------
    float vertices[] = {
        // positions          // normals           // texture coords
        -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  0.0f,  0.0f,
         0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  1.0f,  0.0f,
         0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  1.0f,  1.0f,
         0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  1.0f,  1.0f,
        -0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  0.0f,  1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,  0.0f,  0.0f,

        -0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,  0.0f,  0.0f,
         0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,  1.0f,  0.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,  1.0f,  1.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,  1.0f,  1.0f,
        -0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,  0.0f,  1.0f,
        -0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,  0.0f,  0.0f,

        -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,  1.0f,  0.0f,
        -0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,  1.0f,  1.0f,
        -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,  0.0f,  1.0f,
        -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,  0.0f,  1.0f,
        -0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,  0.0f,  0.0f,
        -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,  1.0f,  0.0f,

         0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,  1.0f,  0.0f,
         0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,  1.0f,  1.0f,
         0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,  0.0f,  1.0f,
         0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,  0.0f,  1.0f,
         0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,  0.0f,  0.0f,
         0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,  1.0f,  0.0f,

        -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,  0.0f,  1.0f,
         0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,  1.0f,  1.0f,
         0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,  1.0f,  0.0f,
         0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,  1.0f,  0.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,  0.0f,  0.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,  0.0f,  1.0f,

        -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,  0.0f,  1.0f,
         0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,  1.0f,  1.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,  1.0f,  0.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,  1.0f,  0.0f,
        -0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,  0.0f,  0.0f,
        -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,  0.0f,  1.0f
    };
    // positions all containers
    glm::vec3 cubePositions[] = {
        glm::vec3( 0.0f,  0.0f,  0.0f),
        glm::vec3( 2.0f,  5.0f, -15.0f),
        glm::vec3(-1.5f, -2.2f, -2.5f),
        glm::vec3(-3.8f, -2.0f, -12.3f),
        glm::vec3( 2.4f, -0.4f, -3.5f),
        glm::vec3(-1.7f,  3.0f, -7.5f),
        glm::vec3( 1.3f, -2.0f, -2.5f),
        glm::vec3( 1.5f,  2.0f, -2.5f),
        glm::vec3( 1.5f,  0.2f, -1.5f),
        glm::vec3(-1.3f,  1.0f, -1.5f)
    };
    // first, configure the cube's VAO (and VBO)
    unsigned int VBO, cubeVAO;
    glGenVertexArrays(1, &cubeVAO);
    glGenBuffers(1, &VBO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    glBindVertexArray(cubeVAO);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));
    glEnableVertexAttribArray(1);
    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
    glEnableVertexAttribArray(2);

    // second, configure the light's VAO (VBO stays the same; the vertices are the same for the light object which is also a 3D cube)
    unsigned int lightCubeVAO;
    glGenVertexArrays(1, &lightCubeVAO);
    glBindVertexArray(lightCubeVAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    // note that we update the lamp's position attribute's stride to reflect the updated buffer data
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);

    // load textures (we now use a utility function to keep the code more organized)
    // -----------------------------------------------------------------------------
    unsigned int diffuseMap = loadTexture(FileSystem::getPath("resources/textures/container2.png").c_str());
    unsigned int specularMap = loadTexture(FileSystem::getPath("resources/textures/container2_specular.png").c_str());

    // shader configuration
    // --------------------
    lightingShader.use();
    lightingShader.setInt("material.diffuse", 0);
    lightingShader.setInt("material.specular", 1);


    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // per-frame time logic
        // --------------------
        float currentFrame = static_cast<float>(glfwGetTime());
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        // be sure to activate shader when setting uniforms/drawing objects
        lightingShader.use();
        lightingShader.setVec3("light.direction", -0.2f, -1.0f, -0.3f);
        lightingShader.setVec3("viewPos", camera.Position);

        // light properties
        lightingShader.setVec3("light.ambient", 0.2f, 0.2f, 0.2f);
        lightingShader.setVec3("light.diffuse", 0.5f, 0.5f, 0.5f);
        lightingShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f);

        // material properties
        lightingShader.setFloat("material.shininess", 32.0f);

        // view/projection transformations
        glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
        glm::mat4 view = camera.GetViewMatrix();
        lightingShader.setMat4("projection", projection);
        lightingShader.setMat4("view", view);

        // world transformation
        glm::mat4 model = glm::mat4(1.0f);
        lightingShader.setMat4("model", model);

        // bind diffuse map
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, diffuseMap);
        // bind specular map
        glActiveTexture(GL_TEXTURE1);
        glBindTexture(GL_TEXTURE_2D, specularMap);

        // render the cube
        // glBindVertexArray(cubeVAO);
        // glDrawArrays(GL_TRIANGLES, 0, 36);*/

        // render containers
        glBindVertexArray(cubeVAO);
        for (unsigned int i = 0; i < 10; i++)
        {
            // calculate the model matrix for each object and pass it to shader before drawing
            glm::mat4 model = glm::mat4(1.0f);
            model = glm::translate(model, cubePositions[i]);
            float angle = 20.0f * i;
            model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
            lightingShader.setMat4("model", model);

            glDrawArrays(GL_TRIANGLES, 0, 36);
        }


        // a lamp object is weird when we only have a directional light, don't render the light object
        // lightCubeShader.use();
        // lightCubeShader.setMat4("projection", projection);
        // lightCubeShader.setMat4("view", view);
        // model = glm::mat4(1.0f);
        // model = glm::translate(model, lightPos);
        // model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube
        // lightCubeShader.setMat4("model", model);

        // glBindVertexArray(lightCubeVAO);
        // glDrawArrays(GL_TRIANGLES, 0, 36);


        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // optional: de-allocate all resources once they've outlived their purpose:
    // ------------------------------------------------------------------------
    glDeleteVertexArrays(1, &cubeVAO);
    glDeleteVertexArrays(1, &lightCubeVAO);
    glDeleteBuffers(1, &VBO);

    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}


// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
    float xpos = static_cast<float>(xposIn);
    float ypos = static_cast<float>(yposIn);
    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }

    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

    lastX = xpos;
    lastY = ypos;

    camera.ProcessMouseMovement(xoffset, yoffset);
}

// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(static_cast<float>(yoffset));
}

// utility function for loading a 2D texture from file
// ---------------------------------------------------
unsigned int loadTexture(char const * path)
{
    unsigned int textureID;
    glGenTextures(1, &textureID);

    int width, height, nrComponents;
    unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
    if (data)
    {
        GLenum format;
        if (nrComponents == 1)
            format = GL_RED;
        else if (nrComponents == 3)
            format = GL_RGB;
        else if (nrComponents == 4)
            format = GL_RGBA;

        glBindTexture(GL_TEXTURE_2D, textureID);
        glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Texture failed to load at path: " << path << std::endl;
        stbi_image_free(data);
    }

    return textureID;
}

点光源

点光源是处于世界中某一个位置的光源,它会朝着所有方向发光,但光线会随着距离逐渐衰减。希望模拟的光源仅照亮光源附近的区域而不是整个场景。

衰减

随着光线传播距离的增长逐渐削减光的强度通常叫做衰减。随距离减少光强度的一种方式是使用一个线性方程。这样的方程能够随着距离的增长线性地减少光的强度,从而让远处的物体更暗。
v
d:片段距离光源的长度
K:三个可配置的项
常数项Kc,一次项Kl,二次项Kq
常数项通常保持1.0,主要作用:保证分母永远不会比1小,否则再某些距离上反而会增加强度,这不是想要的效果
一次项会和距离d相乘,用线性的方式减少强度
二次项会与距离的平方相乘,让光源以二次递减的方式减小强度。二次项在距离比较小的时候影响比一次项小很多,但是距离大时相反

由于二次项的存在,光纤在大部分时候以线性的方式衰减,直到距离变得足够大,让二次项超过一次项,则光的强度会以更快的速度下降。

下面需要对这三个值选择正确的范围:(参考)
https://wiki.ogre3d.org/tiki-index.php?page=-Point+Light+Attenuation

通常,Kc都是1。一次项Kl为了覆盖更远的距离通常很小,二次项Kq更小。下面进行衰减的实现:
在片段着色器中还需要三个额外的值(K)。可以存贮在Light结构体中,使用计算lightDir的方法:

struct Light {
    vec3 position;  

    vec3 ambient;
    vec3 diffuse;
    vec3 specular;

    float constant;
    float linear;
    float quadratic;
};

在OpenGL设置这些值,假如光源要覆盖50的距离:

lightingShader.setFloat("light.constant",  1.0f);
lightingShader.setFloat("light.linear",    0.09f);
lightingShader.setFloat("light.quadratic", 0.032f);

在片段着色器中实现衰减,可以用公式计算出来后,分别再乘以环境光,漫反射和镜面光分量。
还需要距光源的距离,可以通过获取片段和光源之间的向量差,获取结果向量的长度作为距离值。可以用GLSL内建的length函数

float distance    = length(light.position - FragPos);
float attenuation = 1.0 / (light.constant + light.linear * distance + 
                light.quadratic * (distance * distance));

下面 将包含这个衰减值到光照计算中,将它分别乘以环境光,漫反射和镜面光颜色:

ambient  *= attenuation; 
diffuse  *= attenuation;
specular *= attenuation;

聚光

聚光是位于环境中某个位置的光源,它只朝一个特定方向而不是所有方向照射光线。这样的结果就是只有在聚光方向的特定半径内的物体才会被照亮,其它的物体都会保持黑暗。聚光很好的例子就是路灯或手电筒。
OpenGL中聚光是用一个世界空间位置、一个方向和一个切光角(Cutoff Angle)来表示的,切光角指定了聚光的半径(译注:是圆锥的半径不是距光源距离那个半径)。对于每个片段,我们会计算片段是否位于聚光的切光方向之间(也就是在锥形内),如果是的话,我们就会相应地照亮片段。下面这张图会让你明白聚光是如何工作的:
在这里插入图片描述
LightDir:从片段指向光源的向量。
SpotDir:聚光所指向的方向。
Phiϕ:指定了聚光半径的切光角。落在这个角度之外的物体都不会被这个聚光所照亮。
Thetaθ:LightDir向量和SpotDir向量之间的夹角。在聚光内部的话θ值应该比ϕ值小。
所以我们要做的就是计算LightDir向量和SpotDir向量之间的点积——会返回两个单位向量夹角的余弦值(得到θ),并将它与切光角ϕ值对比。你现在应该了解聚光究竟是什么了,下面以手电筒的形式创建一个聚光:

手电筒是一个位于观察者位置的聚光,通常瞄准玩家视角的正前方。可以说,手电筒就是普通的聚光,但是它的位置和方向会随着玩家的位置和朝向不断更新。在片段着色器中需要:聚光的位置向量——用于计算光的方向向量,聚光的方向向量,一个切光角。存储变量到Light结构体中:

struct Light {
    vec3  position;
    vec3  direction;
    float cutOff;
    ...
};

将合适的值传递到着色器中:

lightingShader.setVec3("light.position",  camera.Position);
lightingShader.setVec3("light.direction", camera.Front);
lightingShader.setFloat("light.cutOff",   glm::cos(glm::radians(12.5f)));

可以看到没有给切光角设置一个角度值,反而是用角度值计算了一个余弦值,将余弦结果传递到片段着色器中。这样做的原因是在片段着色器中,我们会计算LightDir和SpotDir向量的点积,这个点积返回的将是一个余弦值而不是角度值,所以我们不能直接使用角度值和余弦值进行比较。为了获取角度值我们需要计算点积结果的反余弦,这是一个开销很大的计算。所以为了节约一点性能开销,我们将会计算切光角对应的余弦值,并将它的结果传入片段着色器中。由于这两个角度现在都由余弦角来表示了,我们可以直接对它们进行比较而不用进行任何开销高昂的计算。
计算θ值,并将它和切光角ϕ对比,来决定是否在聚光的内部:

float theta = dot(lightDir, normalize(-light.direction));

if(theta > light.cutOff) 
{       
  // 执行光照计算
}
else  // 否则,使用环境光,让场景在聚光之外时不至于完全黑暗
  color = vec4(light.ambient * vec3(texture(material.diffuse, TexCoords)), 1.0);

我们首先计算了lightDir和取反的direction向量(取反的是因为我们想让向量指向光源而不是从光源出发)之间的点积。记住要对所有的相关向量标准化。
注:为什么在if条件中使用的是 > 符号而不是 < 符号。theta不应该比光的切光角更小才是在聚光内部吗?这并没有错,但不要忘记角度值现在都由余弦值来表示的。一个0度的角度表示的是1.0的余弦值,而一个90度的角度表示的是0.0的余弦值:
弦值越接近1.0,它的角度就越小。这也就解释了为什么theta要比切光值更大了。切光值目前设置为12.5的余弦,约等于0.9978,所以在0.9979到1.0内的theta值才能保证片段在聚光内,从而被照亮。

平滑/软化边缘

聚光周围有一圈边光,如果一个片段遇到边缘时,应该要平滑过渡的变暗。一个真实的聚光将会在边缘逐渐减少亮度。

创建一种看起来边缘平滑的聚光,我们需要模拟聚光有一个内圆锥(Inner Cone)和一个外圆锥(Outer Cone)。我们可以将内圆锥设置为上一部分中的那个圆锥,但我们也需要一个外圆锥,来让光从内圆锥逐渐减暗,直到外圆锥的边界。
为了创建一个外圆锥,我们只需要再定义一个余弦值来代表聚光方向向量和外圆锥向量(等于它的半径)的夹角。然后,如果一个片段处于内外圆锥之间,将会给它计算出一个0.0到1.0之间的强度值。如果片段在内圆锥之内,它的强度就是1.0,如果在外圆锥之外强度值就是0.0
公式如下:
在这里插入图片描述
ϵ作为分母,是内外圆锥半径的余弦值的差:(ϵ=ϕ−γ)。最终得到聚光强度。实例值组成的表格如下:
在这里插入图片描述
得到的强度值:在聚光外是负的,在内圆锥内大于1.0的,在边缘处于两者之间的强度值了。
正确约束这个值,在片段着色器中就不要If-else了,能够使用计算出来的强度值直接乘以光照分量:

float theta     = dot(lightDir, normalize(-light.direction));
float epsilon   = light.cutOff - light.outerCutOff;
float intensity = clamp((theta - light.outerCutOff) / epsilon, 0.0, 1.0);    
...
// 将不对环境光做出影响,让它总是能有一点光
diffuse  *= intensity;
specular *= intensity;
...

补充:clamp函数,它把第一个参数约束(Clamp)在了0.0到1.0之间。这保证强度值不会在[0, 1]区间之外。
将outerCutOff值添加到了Light结构体之中,并在程序中设置它的uniform值。可以尝试用内切光角是12.5,外切光角是17.5。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/396542.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Shell编程:轻松掌握入门级Shell脚本,成为Shell高手

文章目录前言一. 实验环境二. shell基础入门精讲2.1 什么是shell脚本&#xff1f;2.2 shell的种类2.3 脚本案例2.3.1 打印 hello-word案例2.3.2 统计指定目录下的文件数和目录数2.4 shell脚本编写规范总结前言 &#x1f3e0;个人主页&#xff1a;我是沐风晓月 &#x1f9d1;个人…

微服务架构(小白教学1)

相信大家吃饭的时候肯定是很苦恼打饭之慢&#xff0c;在自己饥肠辘辘的时候&#xff0c;面对自己喜欢吃的食物窗口却如同有百万大军虎视眈眈&#xff0c;自己内心的煎熬可想而知有时候在想这么美味的食物&#xff0c;为什么窗口就只开一个呢&#xff1f;于是你告诉了你的爸爸&a…

浅谈运维工程师的开发能力的培养

写在前面 本文已获得作者授权&#xff0c;作者的博客地址&#xff1a;https://www.cuiliangblog.cn/ 原文链接&#xff1a;浅谈运维工程师的开发能力的培养 一、运维工程师发展路线 1. 传统运维 侧重点是解决具体的问题。要求具备扎实的底层的知识储备&#xff0c;如网络、l…

安卓 Frament + ViewPager使用示例

1. 组成架构 整个架构被包在一个外部Fragment之中&#xff0c;也可以放在一个Activity之中&#xff0c;随意。外部的fragment包含了两个组件&#xff0c;即途中的ViewPager和TabLayoutViewPager要套上一个FragmentStatePagerAdapter &#xff0c;适配器负责new出一个个fragment…

基于Jetson NX的模型部署

系统安装 系统安装过程分为3步&#xff1a; 下载必要的软件及镜像 Jetson Nano Developer Kit SD卡映像 https://developer.nvidia.com/jetson-nano-sd-card-image Windows版SD存储卡格式化程序 https://www.sdcard.org/downloads/formatter_4/eula_windows/ 镜像烧录工具…

嵌入式C语言九大数据结构操作方式详解

在C语言的开发过程中&#xff0c;灵活使用数据结构&#xff0c;对提高编程效率有极大的帮助。 目录 1 数组 2 链表 3 跳表 4 栈 5 队列 6 树 7 堆 8 散列表 9 图 10 总结 数据结构想必大家都不会陌生&#xff0c;对于一个成熟的程序员而言&#xff0c;熟悉和掌握数据…

【C++、C++11】列表初始化、右值引用

文章目录&#x1f4d6; 前言1. 统一的列表初始化1.1 { } 花括号初始化&#xff1a;1.2 std::initializer_list&#xff1a;2. 右值引用2.1 什么是左值和右值&#xff1a;2.2 右值的分类&#xff1a;2.3 左值引用和右值引用的比较2.3 右值的使用场景&#xff1a;2.4 新的类功能&…

SpringBoot整合Quartz以及异步调用

文章目录前言一、异步方法调用1、导入依赖2、创建异步执行任务线程池3、创建业务层接口和实现类4、创建业务层接口和实现类二、测试定时任务1.导入依赖2.编写测试类&#xff0c;开启扫描定时任务3.测试三、实现定时发送邮件案例1.邮箱开启IMAP服务2.导入依赖3.导入EmailUtil4.编…

为「IT女神勋章」而战

大家好&#xff0c;我是空空star&#xff0c;今天为「IT女神勋章」而战 文章目录前言一、IT女神勋章二、绘制爱心1.htmlcssjs来源&#xff1a;一行代码代码效果2.python来源&#xff1a;C知道代码效果3.go来源&#xff1a;复制代码片代码效果4.java来源&#xff1a;download代码…

游戏算法-游戏AI状态机,python实现

AI概述 游戏AI是对游戏内所有非玩家控制角色的行为进行研究和设计&#xff0c;使得游戏内的单位能够感知周围环境&#xff0c;并做出相应的动作表现的技术。游戏AI作为游戏玩法的一大补充&#xff0c;在各种游戏中都有广泛的应用&#xff0c;比如可以和玩家交互聊天的NPC&#…

用户体验设计—影响定制化设计的因素

0 前言最近在上信息构建这门课&#xff08;名为信息构建&#xff0c;但感觉叫用户体验设计更好。。。&#xff09;老师是研究信息行为、人智交互这块的&#xff0c;所以实验课要求我们先学习一个实际的设计案例&#xff0c;让我们搞懂影响定制化设计的因素。所以这篇文章讲讲我…

七色电子标签

机种名 电子会议桌牌 型号 ESL_7color_7.3_D 外观尺寸 176.2x137.15x80mm 产品重量 268g 可视区域 163.297.92mm 外观颜色 银色 供电方式 锂电池供电2300mAh&#xff08;Type-C 接口可充电&#xff09; 显示技术 E-INK电子纸&#xff0c;双屏 像素 800x480 像…

ByteTrack: Multi-Object Tracking by Associating Every Detection Box 论文详细解读

ByteTrack: Multi-Object Tracking by Associating Every Detection Box 论文详细解读 文章目录ByteTrack: Multi-Object Tracking by Associating Every Detection Box 论文详细解读ByteTrackByteTrack算法简介ByteTrack算法流程ByteTrack算法描述一&#xff1a;对检测框进行分…

SOA架构的理解

1. SOA概述 SOA&#xff08;Service-Oriented Architecture&#xff0c;面向服务的架构&#xff09;是一种在计算机环境中设计、开发、部署和管理离散模型的方法。SOA不是一种新鲜事物&#xff0c;它是在企业内部IT系统重复构建以及效率低下的背景下提出的。在SOA模型中&#x…

Nexus 3 清理docker镜像

该文章提供了一种清理nexus3中存储的docker镜像的一种新思路 查看docker repo 比如你的docker repo名字叫做test-repo&#xff0c;然后在nexus3首页的seatch下面找到docker&#xff0c;点进去随便查看一个已经上传的镜像 记住上面的Name选项&#xff0c;之后要用到 设定清理…

centos7 oracle19c安装||新建用户|| ORA-01012: not logged on

总共分三步 1.下载安装包:里面有一份详细的安装教程 链接&#xff1a;https://pan.baidu.com/s/1Of2a72pNLZ-DDIWKrTQfLw?pwd8NAx 提取码&#xff1a;8NAx 2.安装后,执行初始化:时间较长 /etc/init.d/oracledb_ORCLCDB-19c configure 3.配置环境变量,不配置环境变量,sq…

【Linux快速入门】文件目录操作

文章目录概念1. Linux文件系统概述2. Linux文件目录结构3. Linux文件和目录操作3.1 文件操作3.1.1 创建文件3.1.2 复制文件3.1.3 移动文件3.1.4 删除文件3.1.5 查看文件3.1.6 输出指令3.1.7 >和>>指令3.2 目录操作3.2.1 创建目录3.2.2 复制目录3.2.3 移动目录3.2.4 删…

Lesson 8.3 ID3、C4.5 决策树的建模流程 Lesson 8.4 CART 回归树的建模流程与 sklearn 参数详解

文章目录一、ID3 决策树的基本建模流程二、C4.5 决策树的基本建模流程1. 信息值&#xff08;information value&#xff09;2. C4.5 的连续变量处理方法三、CART 回归树的基本建模流程1. 数据准备2. 生成备选规则3. 挑选规则4. 进行多轮迭代5. 回归树的预测过程四、CART 回归树…

关于推荐系统的详细介绍

简介推荐系统是一种信息过滤系统&#xff0c;能够自动预测用户对特定产品或服务的偏好&#xff0c;并向其提供个性化的推荐。它通常基于用户的历史行为、个人喜好、兴趣和偏好等&#xff0c;通过数据挖掘和机器学习算法&#xff0c;在大数据的支持下生成个性化的推荐内容&#…

智云通CRM:与权力者沟通的策略有哪些?

权力者通常具备两个特点&#xff1a;忙和目标导向 1.忙 权力者都很忙&#xff08;不忙也会装出很忙的样子&#xff09;&#xff0c;时间精力有限&#xff0c;销售人员眼里的大项目在权力者看来很有可能只是他诸多工作中的一项。因此&#xff0c;即使有不满者的引荐&#xff0c;…