BufferQueue研究

news2024/9/20 8:41:25

我们在工作的过程中,肯定听过分析卡顿或者冻屏问题的时候,定位到APP卡在dequeueBuffer方法里面,或者也听身边的同事老说3Buffer等信息。所以3Buffer是什么鬼?

什么是BufferQueue?

搞Android,你一定知道Graphic Buffer和 Buffer Queue, 你的笔记中肯定也有下面这张Graphic Buffer的状态迁移图。

系统中有两类Buffer Queue,如下图所示:

  1. Layer背后的Buffer Queue

第一类,也是最为大家所熟知的,就是Layer背后的BufferQueue,用来连接App与SurfaceFlinger。App为Producer端,而 SurfaceFlinger 为 Consumer 端。

App 绘制时,先从 Buffer Queue 中 dequeue(调用 Producer 的 dequeueBuffer()函数)出来一块图形缓冲,绘制完成后,再把绘制好的图形缓冲 queue(调用 Producer 的 queueBuffer()函数)到 Buffer Queue 中,并通知 SurfaceFlinger来消费。SurfaceFlinger 收到通知后,从 Buffer Queue 中 acquire 一块绘制过的 Buffer,然后进行合成处理:要么进行 GPU合成,要么交给 HWC 去合成。

合成完成之后,这个块 Buffer 就恢复自由身,会被返回到 Buffer Queue 中(调用 Consumer 的 releaseBuffer()函数),以备下一次使用。

但是在Android S代码上面,谷歌对SurfaceFlinger的代码进行了重构,从个人理解是为了减少SF的负责,Android S开始强制App端创建BufferQueue,也就是强制Client端分配Buffer。

在Android S的代码中引入了一个BLASTBufferQueue.java(后面简称BBQ)这个类,ViewRootImpl.java在调用relayoutWindow函数的时候,会创建BBQ这个对象。

Surface getOrCreateBLASTSurface() {
    if (!mSurfaceControl.isValid()) {
        return null;
    }

    Surface ret = null;
    if (mBlastBufferQueue == null) {
        mBlastBufferQueue = new BLASTBufferQueue(mTag, mSurfaceControl,
            mSurfaceSize.x, mSurfaceSize.y,
            mWindowAttributes.format);
        // We only return the Surface the first time, as otherwise
        // it hasn't changed and there is no need to update.
        ret = mBlastBufferQueue.createSurface();
    } else {
        mBlastBufferQueue.update(mSurfaceControl,
            mSurfaceSize.x, mSurfaceSize.y,
            mWindowAttributes.format);
    }

    return ret;
}

在BBQ对象初初始化的时候,会调用nativeCreate方法,BBQ对象会在构造方法中传入SurfaceControl对象,而这样就会和SurfaceFlinger创建了一个连接通道。SurfaceControl.java封装了很多Client调用的binder接口,而服务端是SurfaceFlinger。

通过nativeCreate本地方法,通过JNI(android_graphics_BLASTBufferQueue.cpp)的nativeCreate方法,创建了native层的BBQ。

static jlong nativeCreate(JNIEnv* env, jclass clazz, jstring jName, jlong surfaceControl,
                          jlong width, jlong height, jint format) {
    String8 str8;
    if (jName) {
        const jchar* str16 = env->GetStringCritical(jName, nullptr);
        if (str16) {
            str8 = String8(reinterpret_cast<const char16_t*>(str16), env->GetStringLength(jName));
            env->ReleaseStringCritical(jName, str16);
            str16 = nullptr;
        }
    }
    std::string name = str8.string();
    sp<BLASTBufferQueue> queue =
            new BLASTBufferQueue(name, reinterpret_cast<SurfaceControl*>(surfaceControl), width,
                                 height, format);
    queue->incStrong((void*)nativeCreate);
    return reinterpret_cast<jlong>(queue.get());
}
BLASTBufferQueue::BLASTBufferQueue(const std::string& name, const sp<SurfaceControl>& surface,
                                   int width, int height, int32_t format)
      : mSurfaceControl(surface),
        mSize(width, height),
        mRequestedSize(mSize),
        mFormat(format),
        mNextTransaction(nullptr) {
    createBufferQueue(&mProducer, &mConsumer);
    // since the adapter is in the client process, set dequeue timeout
    // explicitly so that dequeueBuffer will block
    mProducer->setDequeueTimeout(std::numeric_limits<int64_t>::max());

    // safe default, most producers are expected to override this
    mProducer->setMaxDequeuedBufferCount(2);
    mBufferItemConsumer = new BLASTBufferItemConsumer(mConsumer,
                                                      GraphicBuffer::USAGE_HW_COMPOSER |
                                                              GraphicBuffer::USAGE_HW_TEXTURE,
                                                      1, false);
    static int32_t id = 0;
    mName = name + "#" + std::to_string(id);
    auto consumerName = mName + "(BLAST Consumer)" + std::to_string(id);
    mQueuedBufferTrace = "QueuedBuffer - " + mName + "BLAST#" + std::to_string(id);
    id++;
    mBufferItemConsumer->setName(String8(consumerName.c_str()));
    mBufferItemConsumer->setFrameAvailableListener(this);
    mBufferItemConsumer->setBufferFreedListener(this);
    mBufferItemConsumer->setDefaultBufferSize(mSize.width, mSize.height);
    mBufferItemConsumer->setDefaultBufferFormat(convertBufferFormat(format));
    mBufferItemConsumer->setBlastBufferQueue(this);

    ComposerService::getComposerService()->getMaxAcquiredBufferCount(&mMaxAcquiredBuffers);
    mBufferItemConsumer->setMaxAcquiredBufferCount(mMaxAcquiredBuffers);

    mTransformHint = mSurfaceControl->getTransformHint();
    mBufferItemConsumer->setTransformHint(mTransformHint);
    SurfaceComposerClient::Transaction()
            .setFlags(surface, layer_state_t::eEnableBackpressure,
                      layer_state_t::eEnableBackpressure)
            .setApplyToken(mApplyToken)
            .apply();
    mNumAcquired = 0;
    mNumFrameAvailable = 0;
    BQA_LOGV("BLASTBufferQueue created width=%d height=%d format=%d mTransformHint=%d", width,
             height, format, mTransformHint);
}

从上面的代码中,createBufferQueue创建了BufferQueue,同时也创建了Graphic Buffer的生产者和消费者。其中有个代码mProducer -> setMaxDequeuedBufferCount(2),这个就和3Buffer有关系了,我们先整理下Buffer的运转过程,如图所示:

  1. App的RenderThread 调用 Producer.dequeueBuffer()在BufferQueue中拿到一个空闲的Buffer。

  1. App的RenderThread调用Producer.queueBuffer将绘制好的 Buffer 入列。注意,此时入列的 Buffer 可能还未绘制完成,即 GPU 可能还在进行绘制工作。

  1. 最终调用到 Procuder 的 Bn 端,即 SurfaceFliner 进程里的某个 Binder 线程里。在 Bn 端,会通过调用SurfaceFlinger的SetTransactionState方法,把当前的带有Buffer信息的State保存到一个TransactionQueue队列中。

  1. 当带有Buffer信息的Layer信息保存到队列中, 这个动作称作“上帧”。所以我么可以在 systrace 上看到该Layer待消费的 Buffer 数目+1。

  1. 而 Buffer Queue 的消费者就是 SurfaceFlinger,所以在下一个 Vsync信号到来后,在 SurfaceFlinger 的 handleMessageInvalidate()函数中,调用 acquireBuffer()去取 Buffer,取走之后,BufferQueue 中待消费的 Buffer 便减少一个。

  1. 因为有上帧,所以要重新进行合成,SurfaceFlinger 调用onMessageRefresh()函数去做合成,一般是 HWC 合成,直接把 Buffer 交给 HWC。合成完成后,在 postComposition()里,会调用binder接口进行通讯。

  1. App端的binder收到消息后调用releaseBuffer()释放 Buffer,如 systrace 所示,这里释放的是上一帧的 Buffer。

上面图中7个步骤就是一个buffer详细的转运过程。

  1. DisplayDevice 背后的Buffer Queue

第二类Buffer Queue是GPU合成特有的,一般在游戏APP渲染过程中会遇到,这个Buffer Queue隐藏在DisplayDevice之后,是在SurfaceFlinger为每个接入系统的显示屏创建DisplayDevice实例时创建的。

执行在SurfaceFlinger::processDisplayAdded函数中。

void SurfaceFlinger::processDisplayAdded(const wp<IBinder>& displayToken,
                                         const DisplayDeviceState& state) {
    ......

    sp<compositionengine::DisplaySurface> displaySurface;
    sp<IGraphicBufferProducer> producer;
    sp<IGraphicBufferProducer> bqProducer;
    sp<IGraphicBufferConsumer> bqConsumer;
    getFactory().createBufferQueue(&bqProducer, &bqConsumer, /*consumerIsSurfaceFlinger =*/false);

    ......
}

这个函数是为DisplaySurface创建BufferQueue, createBufferQueue函数是指向BufferQueue::createBufferQueue,传入的第三个参数 consumerIsSurfaceFlinger 为false,表示BufferQueue的消费者不是SurfaceFlinger。

void SurfaceFlinger::processDisplayAdded(const wp<IBinder>& displayToken,
                                         const DisplayDeviceState& state) {
    ......
    if (state.isVirtual()) {
        const auto displayId = VirtualDisplayId::tryCast(compositionDisplay->getId());
        LOG_FATAL_IF(!displayId);
        auto surface = sp<VirtualDisplaySurface>::make(getHwComposer(), *displayId, state.surface,
                                                       bqProducer, bqConsumer, state.displayName);
        displaySurface = surface;
        producer = std::move(surface);
    } else {
        ALOGE_IF(state.surface != nullptr,
                 "adding a supported display, but rendering "
                 "surface is provided (%p), ignoring it",
                 state.surface.get());
        const auto displayId = PhysicalDisplayId::tryCast(compositionDisplay->getId());
        LOG_FATAL_IF(!displayId);
        displaySurface =
                sp<FramebufferSurface>::make(getHwComposer(), *displayId, bqConsumer,
                                             state.physical->activeMode->getSize(),
                                             ui::Size(maxGraphicsWidth, maxGraphicsHeight));
        producer = bqProducer;
    }
    ......
}

除了虚拟盘,主屏或者外屏采用FrameBufferSurface,继承自ConsumerBase,把BufferQueueConsumer封装到FrameBufferSurface里面。

  1. Buffer共享

  1. Buffer分配

  1. Buffer同步:fence

后面三个点的内容还在整理中,等整理完毕,再同步到这章内容中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/391899.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

理解js的精度问题

参考博客&#xff1a;js精度丢失问题-看这篇文章就够了(通俗易懂)、探寻 JavaScript 精度问题以及解决方案、JavaScript 浮点数陷阱及解法 1 为什么 JavaScript 中所有数字包括整数和小数都只有一种类型 即 Number类型&#xff0c;它的实现遵循 IEEE 754 标准。 符号位S&#…

MySQL运维篇之Mycat分片规则

3.5.3、Mycat分片规则 3.5.3.1、范围分片 根据指定的字段及其配置的范围与数据节点的对应情况&#xff0c;来决定该数据属于哪一个分片。 示例&#xff1a; 可以通过修改autopartition-long.txt自定义分片范围。 注意&#xff1a; 范围分片针对于数字类型的字段&#xff0c;…

Kubernetes Pod 水平自动伸缩(HPA)

Pod 自动扩缩容 之前提到过通过手工执行kubectl scale命令和在Dashboard上操作可以实现Pod的扩缩容&#xff0c;但是这样毕竟需要每次去手工操作一次&#xff0c;而且指不定什么时候业务请求量就很大了&#xff0c;所以如果不能做到自动化的去扩缩容的话&#xff0c;这也是一个…

IO文件操作

认识文件 狭义的文件 存储在硬盘上的数据,以“文件"为单位,进行组织 常见的就是普通的文件 (文本文件,图片, office系列,视频,音频可执行程序…)文件夹也叫做"目录" 也是一种特殊的文件。 广义的文件 操作系统,是要负责管理软硬件资源&#xff0c;操作系统(…

更高效的跨端开发选择:基于小程序容器的Flutter应用开发

为什么说Flutter是一个强大的跨端框架&#xff1f; Flutter是一个基于Dart编程语言的移动应用程序开发框架&#xff0c;由Google开发。它的强大之处在于它可以快速构建高性能、美观、灵活的跨平台应用程序&#xff0c;适用于Android、iOS、Web、Windows、macOS和Linux等多个平…

Git图解-常用命令操作

目录 一、前言 二、初始化仓库 三、添加文件 四、Git 流程全景图 五、Git工作流程 六、工作区和暂存区 七、查看文件状态 八、查看提交日志 九、查看差异 十、版本回退 十一、管理修改 十二、修改撤销 十三、删除文件 十四、分支管理 十五、项目分支操作 十六、…

Centos7使用OVS桥的方式创建KVM虚拟机

一、OVS使用 1、OVS编译安装 下载ovs2.17版本源码 http://www.openvswitch.org//download/ ./boot.sh ./configure make && make install2、启动OVS服务 &#xff08;1&#xff09;创建文件/etc/systemd/system/openvswitch.service [rootlocalhost qemu]# syste…

Spring Cloud Alibaba全家桶(五)——微服务组件Nacos配置中心

前言 本文小新为大家带来 微服务组件Nacos配置中心 相关知识&#xff0c;具体内容包括Nacos Config快速开始指引&#xff0c;搭建nacos-config服务&#xff0c;Config相关配置&#xff0c;配置的优先级&#xff0c;RefreshScope注解等进行详尽介绍~ 不积跬步&#xff0c;无以至…

【面试题】如何避免使用过多的 if else?

大厂面试题分享 面试题库前后端面试题库 &#xff08;面试必备&#xff09; 推荐&#xff1a;★★★★★地址&#xff1a;前端面试题库一、引言相信大家听说过回调地狱——回调函数层层嵌套&#xff0c;极大降低代码可读性。其实&#xff0c;if-else层层嵌套&#xff0c;如下图…

.NET 8 预览版 1 发布!

.NET 8 是一个长期支持(LTS) 版本。这篇文章涵盖了推动增强功能优先级排序和选择开发的主要主题和目标。.NET 8 预览版和发布候选版本将每月交付一次。像往常一样&#xff0c;最终版本将在 11 月的某个时候在 .NET Conf 上发布。 .NET 版本包括产品、库、运行时和工具&#xf…

JavaSE学习笔记总结day19

今日内容 二、线程安全的集合 三、死锁 四、线程通信 五、生产者消费者 六、线程池 零、 复习昨日 创建线程的几种方式 1) 继承 2) 实现Runnable 3) callable接口 Future接口 4) 线程池 启动线程的方法 start() 线程的几种状态 什么是线程不安全 setName getName Thread.curr…

基于intel soc+fpga智能驾驶舱和高级驾驶辅助系统软件设计(三)

虚拟化操作系统介绍 车载平台有逐渐融合的趋势&#xff0c;车载 SoC 的计算性能和应用快速增长&#xff0c;面临着多种应用在 多个显示子系统融合在一起的问题&#xff0c;这就要求平台运行多个操作系统。虚拟化&#xff08;Virtualization&#xff09; 技术飞速发展&#xff0…

软件测试培训三个月,找到工作了11K,面试总结分享给大家

功能方面&#xff1a;问的最多的就是测试流程&#xff0c;测试计划包含哪些内容&#xff0c;公司人员配置&#xff0c;有bug开发认为不是 bug怎么处理&#xff0c;怎样才算是好的用例&#xff0c;测试用例设计方法&#xff08;等价类&#xff0c;边界值等概念方法&#xff09;&…

ETL的模式以及优缺点

首先&#xff0c;ETL有四种主要实现模式&#xff1a;触发器模式、增量字段、全量同步、日志比对。其次&#xff0c;四种模式的优缺点触发器模式优点&#xff1a;数据抽取的性能高&#xff0c;ETL 加载规则简单&#xff0c;速度快&#xff0c;不需要修改业务系统表结构&#xff…

科目二练习与考试点位总结

一&#xff0c;开车前检查1.调整桌椅。2.调整左右后视镜。3.系安全带。二、倒车入库右边倒车直行至左肩与左虚线重合停车&#xff0c;倒车&#xff0c;左视镜下沿与左虚线重合或10cm左右&#xff0c;方向盘右打满。看右视镜第二个虚线一半回一圈。看右视镜右库角消失右打满。观…

Qt音视频开发20-vlc内核动态保存录像文件(不需要重新编译源码)

一、前言 在vlc默认提供的保存文件方式中&#xff0c;通过打开的时候传入指定的参数来保存文件&#xff0c;直到关闭播放生成文件&#xff0c;这种方式简单暴力&#xff0c;但是不适用大部分的场景&#xff0c;大部分时候需要的是提供开始录制和停止录制的功能&#xff0c;也就…

【springmvc】Rest ful风格

RESTful 1、RESTful简介 REST&#xff1a;Representational State Transfer&#xff0c;表现层资源状态转移。 a>资源 资源是一种看待服务器的方式&#xff0c;即&#xff0c;将服务器看作是由很多离散的资源组成。每个资源是服务器上一个可命名的抽象概念。因为资源是一…

华为OD机试题,用 Java 解【获取最大软件版本号】问题

华为Od必看系列 华为OD机试 全流程解析+经验分享,题型分享,防作弊指南)华为od机试,独家整理 已参加机试人员的实战技巧华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典使用说明 参加华为od机试,一定要注意不…

如何用MD5和SHA等构造密码方案中的哈希函数

文章目录常见符号如何实现 H:{0,1}∗→Zp∗H : \{0, 1\}^* \to \mathbb{Z}^*_pH:{0,1}∗→Zp∗​如何实现 H:Zp∗→{0,1}λH: \mathbb{Z}^*_p \to \{0, 1\}^\lambdaH:Zp∗​→{0,1}λ如何实现 H:M→ZN∗H: \mathcal{M} \to \mathbb{Z}^*_NH:M→ZN∗​如何实现 H:{0,1}∗→GH: \…

ElasticSearch - ElasticSearch基本概念及集群内部原理

文章目录1. ElasticSearch的应用场景01. Elasticsearch 是什么&#xff1f;02. 为何使用 Elasticsearch&#xff1f;03. Elasticsearch 的用途是什么&#xff1f;04. Elasticsearch 的工作原理是什么&#xff1f;05. Elasticsearch 索引是什么&#xff1f;06. Logstash 的用途是…