从菜鸟程序员到高级架构师,竟然是因为这个字final

news2024/11/15 16:02:58

final实现原理

简介

final关键字,实际的含义就一句话,不可改变。什么是不可改变?就是初始化完成之后就不能再做任何的修改,修饰成员变量的时候,成员变量变成一个常数;修饰方法的时候,方法不允许被重写;修饰类的时候,类不允许被继承;修饰参数列表的时候,入参的对象也是不可以改变。这个就是不可变,无论是引用新的对象,重写还是继承,都是改变的方法,而final就是把这个变更的路给堵死

用法

final修饰变量

  • final成员变量表示常量,只能被赋值一次,赋值后值不再改变(final要求地址值不能改变)
  • 当final修饰一个基本数据类型时,表示该基本数据类型的值一旦在初始化后便不能发生变化;
  • 如果final修饰一个引用类型时,则在对其初始化之后便不能再让其指向其他对象了,但该引用所指向的对象的内容是可以发生变化的。本质上是一回事,因为引用的值是一个地址,final要求值,即地址的值不发生变化。
  • final修饰一个成员变量(属性),必须要显示初始化。这里有两种初始化方式。
    • 一种是在变量声明的时候初始化。
    • 第二种方法是在声明变量的时候不赋初值,但是要在这个变量所在的类的所有的构造函数中对这个变量赋初值。

final修饰方法

使用final方法的原因有两个。

  • 第一个原因是把方法锁定,以防任何继承类修改它的含义,不能被重写;
  • 第二个原因是效率,final方法比非final方法要快,因为在编译的时候已经静态绑定了,不需要在运行时再动态绑定。

注:类的private方法会隐式地被指定为final方法

final修饰类

当用final修饰一个类时,表明这个类不能被继承。

final类中的成员变量可以根据需要设为final,但是要注意final类中的所有成员方法都会被隐式地指定为final方法。

在使用final修饰类的时候,要注意谨慎选择,除非这个类真的在以后不会用来继承或者出于安全的考虑,尽量不要将类设计为final类。

final关键字的好处

  • final关键字提高了性能。JVM和Java应用都会缓存final变量。
  • final变量可以安全的在多线程环境下进行共享,而不需要额外的同步开销。
  • 使用final关键字,JVM会对方法、变量及类进行优化。

注意事项

  • final关键字可以用于成员变量、本地变量、方法以及类。
  • final成员变量必须在声明的时候初始化或者在构造器中初始化,否则就会报编译错误。
  • 你不能够对final变量再次赋值。
  • 本地变量必须在声明时赋值。
  • 在匿名类中所有变量都必须是final变量。
  • final方法不能被重写。
  • final类不能被继承。
  • final关键字不同于finally关键字,后者用于异常处理。
  • final关键字容易与finalize()方法搞混,后者是在Object类中定义的方法,是在垃圾回收之前被JVM调用的方法。
  • 接口中声明的所有变量本身是final的。
  • final和abstract这两个关键字是反相关的,final类就不可能是abstract的。
  • final方法在编译阶段绑定,称为静态绑定(static binding)。
  • 没有在声明时初始化final变量的称为空白final变量(blank final variable),它们必须在构造器中初始化,或者调用this()初始化。不这么做的话,编译器会报错“final变量(变量名)需要进行初始化”。
  • 将类、方法、变量声明为final能够提高性能,这样JVM就有机会进行估计,然后优化。
  • 按照Java代码惯例,final变量就是常量,而且通常常量名要大写。
  • 对于集合对象声明为final指的是引用不能被更改,但是你可以向其中增加,删除或者改变内容。

原理

内存语义

写内存语义可以确保在对象的引用为任意线程可见之前,final 域已经被初始化过了。

读内存语义可以确保如果对象的引用不为 null,则说明 final 域已经被初始化过了。

总之,final 域的内存语义提供了初始化安全保证。

  • 写内存语义:在构造函数内对一个 final 域的写入,与随后将对象引用赋值给引用变量,这两个操作不能重排序。
  • 读内存语义:初次读一个包含 final 域的对象的引用,与随后初次读这个 final 域,这两个操作不能重排序。

写 final 域的重排序规则

写 final 域的重排序规则禁止把 final 域的写重排序到构造函数之外。这个规则的实现包含下面 2 个方面:

  • JMM 禁止编译器把 final 域的写重排序到构造函数之外。
  • 编译器会在 final 域的写之后,构造函数 return 之前,插入一个 StoreStore 屏障。这个屏障禁止处理器把 final 域的写重排序到构造函数之外。

现在让我们分析 writer () 方法。writer () 方法只包含一行代码:finalExample = new FinalExample ()。这行代码包含两个步骤:

  1. 构造一个 FinalExample 类型的对象;
  2. 把这个对象的引用赋值给引用变量 obj。

假设线程 B 读对象引用与读对象的成员域之间没有重排序(马上会说明为什么需要这个假设),下图是一种可能的执行时序:

img

在上图中,写普通域的操作被编译器重排序到了构造函数之外,读线程 B 错误的读取了普通变量 i 初始化之前的值。而写 final 域的操作,被写 final 域的重排序规则“限定”在了构造函数之内,读线程 B 正确的读取了 final 变量初始化之后的值。

写 final 域的重排序规则可以确保:在对象引用为任意线程可见之前,对象的 final 域已经被正确初始化过了,而普通域不具有这个保障。以上图为例,在读线程 B“看到”对象引用 obj 时,很可能 obj 对象还没有构造完成(对普通域 i 的写操作被重排序到构造函数外,此时初始值 2 还没有写入普通域 i)。

读 final 域的重排序规则

读 final 域的重排序规则如下:

在一个线程中,初次读对象引用与初次读该对象包含的 final 域,JMM 禁止处理器重排序这两个操作(注意,这个规则仅仅针对处理器)。编译器会在读 final 域操作的前面插入一个 LoadLoad 屏障。

初次读对象引用与初次读该对象包含的 final 域,这两个操作之间存在间接依赖关系。由于编译器遵守间接依赖关系,因此编译器不会重排序这两个操作。大多数处理器也会遵守间接依赖,大多数处理器也不会重排序这两个操作。但有少数处理器允许对存在间接依赖关系的操作做重排序(比如 alpha 处理器),这个规则就是专门用来针对这种处理器。

reader() 方法包含三个操作:

  1. 初次读引用变量 obj;
  2. 初次读引用变量 obj 指向对象的普通域 j。
  3. 初次读引用变量 obj 指向对象的 final 域 i

现在我们假设写线程 A 没有发生任何重排序,同时程序在不遵守间接依赖的处理器上执行,下面是一种可能的执行时序

img

在上图中,读对象的普通域的操作被处理器重排序到读对象引用之前。读普通域时,该域还没有被写线程 A 写入,这是一个错误的读取操作。而读 final 域的重排序规则会把读对象 final 域的操作“限定”在读对象引用之后,此时该 final 域已经被 A 线程初始化过了,这是一个正确的读取操作。

读 final 域的重排序规则可以确保:在读一个对象的 final 域之前,一定会先读包含这个 final 域的对象的引用。在这个示例程序中,如果该引用不为 null,那么引用对象的 final 域一定已经被 A 线程初始化过了。

如果 final 域是引用类型

上面我们看到的 final 域是基础数据类型,下面让我们看看如果 final 域是引用类型,将会有什么效果?

请看下列示例代码:

COPYpublic class FinalReferenceExample {
    final int[] intArray;                     //final 是引用类型 
    static FinalReferenceExample obj;

    public FinalReferenceExample () {        // 构造函数 
        intArray = new int[1];              //1
        intArray[0] = 1;                   //2
    }

    public static void writerOne () {          // 写线程 A 执行 
        obj = new FinalReferenceExample ();  //3
    }

    public static void writerTwo () {          // 写线程 B 执行 
        obj.intArray[0] = 2;                 //4
    }

    public static void reader () {              // 读线程 C 执行 
        if (obj != null) {                    //5
            int temp1 = obj.intArray[0];       //6
        }
    }
}

这里 final 域为一个引用类型,它引用一个 int 型的数组对象。对于引用类型,写 final 域的重排序规则对编译器和处理器增加了如下约束:

在构造函数内对一个 final 引用的对象的成员域的写入,与随后在构造函数外把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。

对上面的示例程序,我们假设首先线程 A 执行 writerOne() 方法,执行完后线程 B 执行 writerTwo() 方法,执行完后线程 C 执行 reader () 方法。下面是一种可能的线程执行时序:

img

在上图中,1 是对 final 域的写入,2 是对这个 final 域引用的对象的成员域的写入,3 是把被构造的对象的引用赋值给某个引用变量。这里除了前面提到的 1 不能和 3 重排序外,2 和 3 也不能重排序。

JMM 可以确保读线程 C 至少能看到写线程 A 在构造函数中对 final 引用对象的成员域的写入。即 C 至少能看到数组下标 0 的值为 1。而写线程 B 对数组元素的写入,读线程 C 可能看的到,也可能看不到。JMM 不保证线程 B 的写入对读线程 C 可见,因为写线程 B 和读线程 C 之间存在数据竞争,此时的执行结果不可预知。

如果想要确保读线程 C 看到写线程 B 对数组元素的写入,写线程 B 和读线程 C 之间需要使用同步原语(lock 或 volatile)来确保内存可见性。

为什么 final 引用不能从构造函数内“逸出”

前面我们提到过,写 final 域的重排序规则可以确保:在引用变量为任意线程可见之前,该引用变量指向的对象的 final 域已经在构造函数中被正确初始化过了。其实要得到这个效果,还需要一个保证:在构造函数内部,不能让这个被构造对象的引用为其他线程可见,也就是对象引用不能在构造函数中“逸出”。为了说明问题,让我们来看下面示例代码:

COPYpublic class FinalReferenceEscapeExample {
    final int i;
    static FinalReferenceEscapeExample obj;

    public FinalReferenceEscapeExample () {
        i = 1;                              //1 写 final 域 
        obj = this;                          //2 this 引用在此“逸出”
    }

    public static void writer() {
        new FinalReferenceEscapeExample ();
    }    

    public static void reader {
        if (obj != null) {                     //3
            int temp = obj.i;                 //4
        }
    }
}

假设一个线程 A 执行 writer() 方法,另一个线程 B 执行 reader() 方法。这里的操作 2 使得对象还未完成构造前就为线程 B 可见。即使这里的操作 2 是构造函数的最后一步,且即使在程序中操作 2 排在操作 1 后面,执行 read() 方法的线程仍然可能无法看到 final 域被初始化后的值,因为这里的操作 1 和操作 2 之间可能被重排序。实际的执行时序可能如下图所示:

img

从上图我们可以看出:在构造函数返回前,被构造对象的引用不能为其他线程可见,因为此时的 final 域可能还没有被初始化。在构造函数返回后,任意线程都将保证能看到 final 域正确初始化之后的值。

final 语义在处理器中的实现

现在我们以 x86 处理器为例,说明 final 语义在处理器中的具体实现。

上面我们提到,写 final 域的重排序规则会要求译编器在 final 域的写之后,构造函数 return 之前,插入一个 StoreStore 障屏。读 final 域的重排序规则要求编译器在读 final 域的操作前面插入一个 LoadLoad 屏障。

由于 x86 处理器不会对写 - 写操作做重排序,所以在 x86 处理器中,写 final 域需要的 StoreStore 障屏会被省略掉。同样,由于 x86 处理器不会对存在间接依赖关系的操作做重排序,所以在 x86 处理器中,读 final 域需要的 LoadLoad 屏障也会被省略掉。也就是说在 x86 处理器中,final 域的读 / 写不会插入任何内存屏障!

为什么要增强 final 的语义

在旧的 Java 内存模型中 ,最严重的一个缺陷就是线程可能看到 final 域的值会改变。比如,一个线程当前看到一个整形 final 域的值为 0(还未初始化之前的默认值),过一段时间之后这个线程再去读这个 final 域的值时,却发现值变为了 1(被某个线程初始化之后的值)。最常见的例子就是在旧的 Java 内存模型中,String 的值可能会改变。

为了修补这个漏洞,JSR-133 专家组增强了 final 的语义。通过为 final 域增加写和读重排序规则,可以为 java 程序员提供初始化安全保证:只要对象是正确构造的(被构造对象的引用在构造函数中没有“逸出”),那么不需要使用同步(指 lock 和 volatile 的使用),就可以保证任意线程都能看到这个 final 域在构造函数中被初始化之后的值。

final、finally、 finalize区别

  • final可以用来修饰类、方法、变量,分别有不同的意义,final修饰的class代表不可以继承扩展,final的变量是不可以修改的,而final的方法也是不可以重写的(override)。
  • finally则是Java保证重点代码一定要被执行的一种机制。我们可以使用try-finally或者try-catch-finally来进行类似关闭JDBC连接、保证unlock锁等动作。
  • finalize是基础类java.lang.Object的一个方法,它的设计目的是保证对象在被垃圾收集前完成特定资源的回收。finalize机制现在已经不推荐使用,并且在JDK 9开始被标记为deprecated。

本文由传智教育博学谷狂野架构师教研团队发布。

如果本文对您有帮助,欢迎关注点赞;如果您有任何建议也可留言评论私信,您的支持是我坚持创作的动力。

转载请注明出处!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/381969.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

23种设计模式之简单工厂模式

一、场景简介 1、引入场景 订餐流程简单描述 食品抽象类,规定食品的基础属性操作 鱼类,鸡肉类食品类扩展 订餐流程类,根据食品名称,加工指定类型食品 模拟客户端预定操作 2、源代码实现 关系图谱 代码实现 /*** 简单工厂模式引入场景*/ public class C01_InScene { p…

【word】论文排版思路

1、 首先把所有中文的字体都按照要求改一下,记住都改成正文的字号和字体,后面再修改标题的,然后再改英文的,不要把顺序弄错了,不然得回头再改标题 然后定位文章里所有英文方法如下: 按CTRLF打开替换对话…

记录--虚拟滚动探索与封装

这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 1. 介绍 什么是虚拟滚动?虚拟滚动就是通过js控制大列表中的dom创建与销毁,只创建可视区域dom,非可视区域的dom不创建。这样在渲染大列表中的数据时,只创…

快速生成QR码的方法:教你变成QR Code Master

目录 简介: 具体实现步骤: 一、可以使用Python中的qrcode和tkinter模块来生成QR码。以下是一个简单的例子,演示如何在Tkinter窗口中获取用户输入并使用qrcode生成QR码。 1)首先需要安装qrcode模块,可以使用以下命令在终端或命令…

aws batch 理解和使用batch进行批处理计算

文档 Compute Resource Memory ManagementRunning Workload on AWS Batch aws batch 是云上的批处理平台,通过托管环境减少了管理成本。包括配置大量计算资源,更具任务负载优化资源分配。 基本概念 job(任务),提交到…

C语言-结构体【详解】

一、 结构体的基础知识 结构是一些值的集合,这些值称为成员变量结构的每个成员可以是不同类型的变量 (1)结构体的声明 写法一: 注: 括号后边的分号不能忘结构体末尾可以不创建变量,在主函数中再创建 struc…

【ChatGPT】sqlachmey 多表连表查询语句

感受下科技带来的魅力,这篇文章是通过ChatGPT自动生成的,不得不说技术强大!!! 在SQLAlchemy中进行多表连接查询可以使用join()方法或join()函数,具体用法如下: join()方法 join()方法可以在SQLAlchemy ORM中的查询中使用。假设…

根据指定函数对DataFrame中各元素进行计算

【小白从小学Python、C、Java】【计算机等级考试500强双证书】【Python-数据分析】根据指定函数对DataFrame中各元素进行计算以下错误的一项是?import numpy as npimport pandas as pdmyDict{A:[1,2],B:[3,4]}myDfpd.DataFrame(myDict)print(【显示】myDf)print(myDf)print(【…

SMILES标准化方法以及其中的一个坑(手性)

rdkit.Chem.MolToSmiles()方法是用于将RDKit分子对象转换为SMILES字符串的方法。它的参数如下: mol:必需,要转换为SMILES字符串的RDKit分子对象。isomericSmiles:bool类型,是否生成同分异构体SMILES,默认为…

培训班出身的同学简历怎么做?面试要注意哪些?来自资深大厂HR的忠告

目录 1 不少培训班候选人的简历中,缺乏足够的商业项目年限 2 直接描述培训班学习经历会带来的负面影响 3 大龄转行Vs年轻的初级程序员,公司一般会如何选择? 4 经过培训班突击后,可以先面试小公司 5 面试官怎么面试有培训班经历…

安卓开发到底是做什么的

前言 在某平台看到了这样一个问题: 要知道,安卓开发是当前软件行业中的一个热门方向,它涉及到使用 Java 或 Kotlin 语言开发应用程序,运行在安卓操作系统上的手机、平板电脑、电视等设备上。在过去的几年中,随着智能…

追溯ChatGPT

ChatGPT 国内趋势 在国际学术界看来,ChatGPT / GPT-3.5 是一种划时代的产物 它与之前常见的语言模型 (Bert/ Bart/ T5) 的区别,几乎是导弹与弓箭的区别,一定要引起最高程度的重视 国际上的主流学术机构 (如斯坦福大学,伯克利加…

Ep_计网面试题-UDP实现TCP?

其实把TCP优点拿过来就行 直接上答案: 1、添加seq/ack机制,确保数据发送到对端 2、添加发送和接收缓冲区 3、添加超时重传机制 视频讲解: https://edu.csdn.net/course/detail/38090 点我进入 面试宝典 很多人不知道面试问什么,或者其他的XXGuide,那里边的太多没…

示波器上位机软件下载安装教程

软件:示波器软件NS-Scope 语言:简体中文 环境:NI-VISA安装环境:Win10以上版本(特殊需求请后台私信联系客服) 硬件要求:CPU2GHz 内存4G(或更高)硬盘500G(或更高) 驱动…

第十二 代码块、设计模式(懒汉、饿汉)

代码块概述 ●代码块是类的5大成分之一(成员变量、构造器,方法,代码块,内部类),定义在类中方法外。 ●在ava类下,使用{}括起来的代码被称为代码块。 代码块分为 静态代码块: 格式:static{ 特点:需要通过static关键字修…

企业个人,没有品牌不好混

企业、个人没品牌没法持续混下去 “品牌资产”需要持续积累 频繁切换,品牌无法立 趣讲大白话:没点品牌没法混 【安志强趣讲信息科技91期】 ******************************* 企业品牌资产:指能给企业带来效益的消费者品牌认知,包括…

『C/C++养成计划』C++中的双冒号::名解析(Scope Resolution Operator)

C中的双冒号::名解析(Scope Resolution Operator)! 文章目录1. 访问命名空间中的成员2. 访问类中的静态成员3. 嵌套类访问4. 在类之外定义函数5. 当存在具有相同名称的局部变量时,要访问全局变量6. C模板参数的自动推导参考文献C中的双冒号名解析&#…

外贸人如何写出优秀的开发信?附详细思路

如何写出优秀的开发信?最近做出口生意的客户都在抱怨,开发信的回复率越来越低,其实原因有很多,有时候并非自己的能力实在很欠缺。原因总结如图:第一:市场不景气这个就是就属于客观因素了,这也许…

InstructGPT论文笔记

论文链接:https://arxiv.org/pdf/2203.02155.pdf 1 摘要 做的事: 1、标注了数据,问题和答案写出来,然后训练模型 2、收集数据集,排序模型的输出,使用强化学习训练这个排序的过程 效果层面来说&#xff1…

思迅软件端口不通导致软件和软锁报错的问题

一、端口不通导致软件和软锁报错的问题 问题说明:打开软件提示到:xxx.xxx.xxx.xxx失败! 处理步骤1: 假设软锁服务器IP为192.168.0.1,分别在服务器本机和客户端电脑测试软锁服务: 在服务器的浏览器中访问地址: http:/…