Day894.加锁规则的一些问题 -MySQL实战

news2024/9/24 17:12:27

加锁规则的一些问题

Hi,我是阿昌,今天学习记录的是关于加锁规则的一些问题的内容。

加锁规则,这个规则中,包含了两个“原则”、两个“优化”和一个“bug”:

  • 原则 1:加锁的基本单位是 next-key lock。next-key lock 是前开后闭区间。
  • 原则 2:查找过程中访问到的对象才会加锁。
  • 优化 1:索引上的等值查询,给唯一索引加锁的时候,next-key lock 退化为行锁。
  • 优化 2:索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,next-key lock 退化为间隙锁。
  • 一个 bug:唯一索引上的范围查询会访问到不满足条件的第一个值为止。

接下来,是基于下面这个表 t:

CREATE TABLE `t` (
  `id` int(11) NOT NULL,
  `c` int(11) DEFAULT NULL,
  `d` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `c` (`c`)
) ENGINE=InnoDB;

insert into t values(0,0,0),(5,5,5),(10,10,10),(15,15,15),(20,20,20),(25,25,25);

一、不等号条件里的等值查询

等值查询和“遍历”有什么区别?为什么where 条件是不等号,这个过程里也有等值查询?

来看下这个例子,分析一下这条查询语句的加锁范围:

begin;
select * from t where id>9 and id<12 
order by id desc for update;

利用上面的加锁规则,这个语句的加锁范围是主键索引上的 (0,5]、(5,10]和 (10, 15)。也就是说,id=15 这一行,并没有被加上行锁。

为什么呢?说加锁单位是 next-key lock,都是前开后闭区间,但是这里用到了优化 2,即索引上的等值查询,向右遍历的时候 id=15 不满足条件,所以 next-key lock 退化为了间隙锁 (10, 15)。但是,查询语句中 where 条件是大于号和小于号,这里的“等值查询”又是从哪里来的呢?

要知道,加锁动作是发生在语句执行过程中的,所以在分析加锁行为的时候,要从索引上的数据结构开始。这里,再把这个过程拆解一下。

如图 1 所示,是这个表的索引 id 的示意图。

图 1 索引 id 示意图

  1. 首先这个查询语句的语义是 order by id desc,要拿到满足条件的所有行,优化器必须先找到“第一个 id<12 的值”。
  2. 这个过程是通过索引树的搜索过程得到的,在引擎内部,其实是要找到 id=12 的这个值,只是最终没找到,但找到了 (10,15) 这个间隙。
  3. 然后向左遍历,在遍历过程中,就不是等值查询了,会扫描到 id=5 这一行,所以会加一个 next-key lock (0,5]。

也就是说,在执行过程中,通过树搜索的方式定位记录的时候,用的是“等值查询”的方法。


二、等值查询的过程

下面这个语句的加锁范围是什么?


begin;
select id from t where c in(5,20,10) lock in share mode;

这条查询语句里用的是 in,先来看这条语句的 explain 结果。

图 2 in 语句的 explain 结果
可以看到,这条 in 语句使用了索引 c 并且 rows=3,说明这三个值都是通过 B+ 树搜索定位的。

在查找 c=5 的时候,先锁住了 (0,5]。但是因为 c 不是唯一索引,为了确认还有没有别的记录 c=5,就要向右遍历,找到 c=10 才确认没有了,这个过程满足优化 2,所以加了间隙锁 (5,10)。

同样的,执行 c=10 这个逻辑的时候,加锁的范围是 (5,10] 和 (10,15);执行 c=20 这个逻辑的时候,加锁的范围是 (15,20] 和 (20,25)。

通过这个分析,可以知道,这条语句在索引 c 上加的三个记录锁的顺序是:先加 c=5 的记录锁,再加 c=10 的记录锁,最后加 c=20 的记录锁。这个加锁范围,不就是从 (5,25) 中去掉 c=15 的行锁吗?为什么这么麻烦地分段说呢?

因为要跟你强调这个过程:这些锁是“在执行过程中一个一个加的”,而不是一次性加上去的

理解了这个加锁过程之后,就可以来分析下面例子中的死锁问题了。

如果同时有另外一个语句,是这么写的:


select id from t where c in(5,20,10) order by c desc for update;

此时的加锁范围,又是什么呢?

现在都知道间隙锁是不互锁的,但是这两条语句都会在索引 c 上的 c=5、10、20 这三行记录上加记录锁。

这里需要注意一下,由于语句里面是 order by c desc, 这三个记录锁的加锁顺序,是先锁 c=20,然后 c=10,最后是 c=5。也就是说,这两条语句要加锁相同的资源,但是加锁顺序相反。当这两条语句并发执行的时候,就可能出现死锁。

关于死锁的信息,MySQL 只保留了最后一个死锁的现场,但这个现场还是不完备的。


三、怎么看死锁?

图 3 是在出现死锁后,执行 show engine innodb status 命令得到的部分输出。

这个命令会输出很多信息,有一节 LATESTDETECTED DEADLOCK,就是记录的最后一次死锁信息

图 3 死锁现场

来看看这图中的几个关键信息。

  1. 这个结果分成三部分:
    • (1) TRANSACTION,是第一个事务的信息;
    • (2) TRANSACTION,是第二个事务的信息;
    • WE ROLL BACK TRANSACTION (1),是最终的处理结果,表示回滚了第一个事务。
  2. 第一个事务的信息中:
    • WAITING FOR THIS LOCK TO BE GRANTED,表示的是这个事务在等待的锁信息;
    • index c of table test.t,说明在等的是表 t 的索引 c 上面的锁;
    • lock mode S waiting 表示这个语句要自己加一个读锁,当前的状态是等待中;
    • Record lock 说明这是一个记录锁;
    • n_fields 2 表示这个记录是两列,也就是字段 c 和主键字段 id;
    • 0: len 4; hex 0000000a; asc ;; 是第一个字段,也就是 c。值是十六进制 a,也就是 10;
    • 1: len 4; hex 0000000a; asc ;; 是第二个字段,也就是主键 id,值也是 10;
    • 这两行里面的 asc 表示的是,接下来要打印出值里面的“可打印字符”,但 10 不是可打印字符,因此就显示空格。
    • 第一个事务信息就只显示出了等锁的状态,在等待 (c=10,id=10) 这一行的锁。
    • 当然你是知道的,既然出现死锁了,就表示这个事务也占有别的锁,但是没有显示出来。别着急,从第二个事务的信息中推导出来。
  3. 第二个事务显示的信息要多一些:
    • “ HOLDS THE LOCK(S)”用来显示这个事务持有哪些锁;
    • index c of table test.t 表示锁是在表 t 的索引 c 上;
    • hex 0000000a 和 hex 00000014 表示这个事务持有 c=10 和 c=20 这两个记录锁;
    • WAITING FOR THIS LOCK TO BE GRANTED,表示在等 (c=5,id=5) 这个记录锁。

从上面这些信息中,就知道:

  1. “lock in share mode”的这条语句,持有 c=5 的记录锁,在等 c=10 的锁;
  2. “for update”这个语句,持有 c=20 和 c=10 的记录锁,在等 c=5 的记录锁。

因此导致了死锁。这里,可以得到两个结论:

  1. 由于锁是一个个加的,要避免死锁,对同一组资源,要按照尽量相同的顺序访问
  2. 在发生死锁的时刻,for update 这条语句占有的资源更多,回滚成本更大,所以 InnoDB 选择了回滚成本更小的 lock in share mode 语句,来回滚

四、怎么看锁等待?

看一个锁等待的例子。

图 4 delete 导致间隙变化

可以看到,由于 session A 并没有锁住 c=10 这个记录,所以 session B 删除 id=10 这一行是可以的。但是之后,session B 再想 insert id=10 这一行回去就不行了。

现在一起看一下此时 show engine innodb status 的结果,看看能不能给我们一些提示。

锁信息是在这个命令输出结果的 TRANSACTIONS 这一节。

可以在文稿中看到这张图片

图 5 锁等待信息

来看几个关键信息。

  1. index PRIMARY of table test.t ,表示这个语句被锁住是因为表 t 主键上的某个锁。
  2. lock_mode X locks gap before rec insert intention waiting 这里有几个信息:
    • insert intention 表示当前线程准备插入一个记录,这是一个插入意向锁。可以认为它就是这个插入动作本身。
    • gap before rec 表示这是一个间隙锁,而不是记录锁。
  3. 那么这个 gap 是在哪个记录之前的呢?接下来的 0~4 这 5 行的内容就是这个记录的信息。
  4. n_fields 5 也表示了,这一个记录有 5 列:
    • 0: len 4; hex 0000000f; asc ;; 第一列是主键 id 字段,十六进制 f 就是 id=15。所以,这时我们就知道了,这个间隙就是 id=15 之前的,因为 id=10 已经不存在了,它表示的就是 (5,15)。
    • 1: len 6; hex 000000000513; asc ;; 第二列是长度为 6 字节的事务 id,表示最后修改这一行的是 trx id 为 1299 的事务。
    • 2: len 7; hex b0000001250134; asc % 4;; 第三列长度为 7 字节的回滚段信息。可以看到,这里的 acs 后面有显示内容 (% 和 4),这是因为刚好这个字节是可打印字符。
    • 后面两列是 c 和 d 的值,都是 15。

因此,由于 delete 操作把 id=10 这一行删掉了,原来的两个间隙 (5,10)、(10,15)变成了一个 (5,15)。

说到这里,可以联合起来再思考一下这两个现象之间的关联:

  1. session A 执行完 select 语句后,什么都没做,但它加锁的范围突然“变大”了;
  2. 第 21 篇文章的课后思考题,当我们执行 select * from t where c>=15 and c<=20 order by c desc lock in share mode; 向左扫描到 c=10 的时候,要把 (5, 10]锁起来。

也就是说,所谓“间隙”,其实根本就是由“这个间隙右边的那个记录”定义的


五、update 的例子

一个 update 语句的案例。
图 6 update 的例子

session A 的加锁范围是索引 c 上的 (5,10]、(10,15]、(15,20]、(20,25]和 (25,supremum]。

注意:根据 c>5 查到的第一个记录是 c=10,因此不会加 (0,5]这个 next-key lock。

之后 session B 的第一个 update 语句,要把 c=5 改成 c=1,可以理解为两步:

  1. 插入 (c=1, id=5) 这个记录;
  2. 删除 (c=5, id=5) 这个记录。

索引 c 上 (5,10) 间隙是由这个间隙右边的记录,也就是 c=10 定义的。

所以通过这个操作,session A 的加锁范围变成了图 7 所示的样子:

图 7 session B 修改后, session A 的加锁范围

好,接下来 session B 要执行 update t set c = 5 where c = 1 这个语句了,一样地可以拆成两步:

  1. 插入 (c=5, id=5) 这个记录;
  2. 删除 (c=1, id=5) 这个记录。

第一步试图在已经加了间隙锁的 (1,10) 中插入数据,所以就被堵住了。


六、问题

一个空表有间隙吗?这个间隙是由谁定义的?怎么验证这个结论呢?

有间隙,间隙应该是负无穷~正无穷。验证如下:在空表select * for update,另一个线程insert 会发现被阻塞。

有间隙,应该是由最小值(infimum)和最大值(supermum)来定的。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/356602.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

stable-diffusion-webui 安装使用

文章目录1.github 下载&#xff0c;按教程运行2.安装python 忘记勾选加入环境变量&#xff0c;自行加入&#xff08;重启生效&#xff09;3.环境变量添加后&#xff0c;清理tmp &#xff0c;venv重新运行4.运行报错&#xff0c;无法升级pip&#xff0c;无法下载包&#xff0c;5…

如何将Python打包后的exe还原成.py?

将python打包好的exe解压为py文件&#xff0c;步骤如下&#xff1a;下载pyinstxtractor.py文件下载地址&#xff1a;https://nchc.dl.sourceforge.net/project/pyinstallerextractor/dist/pyinstxtractor.py并将pyinstxtractor.py放到和exe相同的目录文件下打开命令控制台cd 进…

No.182# 技术管理之管理任务管理

引言继前文梳理「团队建设」与「管理规划」后&#xff0c;本文梳理下技术管理的另外一块「任务管理」。走查任务管理的主要内容&#xff1a;主要内容提点任务目标量化任务的优先级拉通形成共识团队梯队建设任务进度跟踪任务完成复盘一、主要内容提点二、任务目标量化任务管理&a…

QT mp3音乐播放器实现框架,Qt鼠标事件,网络编程,QSqlite,Json解析,HTTP请求等

QT mp3音乐播放器实现框架&#xff0c;Qt鼠标事件&#xff0c;网络编程&#xff0c;QSqlite,Json解析&#xff0c;HTTP请求等框架搭建UI设计mp3.hmp3.cpp隐藏窗口标题 最大化 最小化 关闭框架搭建 .pro添加 # 网络 添加多媒体 数据库 QT network multimedia sql添加头…

C进阶:5.动态内存管理

目录 1.为什么存在动态内存分配 2.动态内存函数的介绍 2.1 malloc 和 free 2.2 calloc malloc 与 calloc的区别&#xff1a; 2.3 realloc 3.常见的动态内存错误 3.1对NULL指针的解引用操作 3.2对动态开辟空间的越界访问 3.3对非动态开辟的内存使用free释放 3.4使用f…

帮助指令 man ,help及文档常用管理指令

帮助指令 man&#xff0c;help 1. man 当我们想要了解某个命令如何使用&#xff0c;及选项的含义是什么以及配置文件的帮助信息时&#xff0c;可以使用 man [命令或配置文件]&#xff0c;这样便可以获得到帮助提示信息了。 语法格式&#xff1a;man [命令或者配置文件] 比如…

[SSD科普之2] SATA、mSATA、M.2、M.2(NVMe)、PCIE固态硬盘接口详解

固态硬盘概念固态驱动器&#xff08;Solid State Drive&#xff09;&#xff0c;俗称固态硬盘&#xff0c;固态硬盘是用固态电子存储芯片阵列而制成的硬盘&#xff0c;因为台湾英语里把固体电容称之为Solid而得名。SSD由控制单元和存储单元&#xff08;FLASH芯片、DRAM芯片&…

最全280个上市公司数字化转型指标(2010-2021年)

基于年报测度数字化的论文在中文顶刊已有有趣的研究发表&#xff0c;从深交所、上交所下载2010-2021年上市公司年报&#xff0c;提取MD&A部分&#xff0c;基于《管理世界》、《经济研究》等期刊论文构建企业数字化词典&#xff08;详细参考见后文&#xff09;&#xff0c;将…

JavaScript系列之实现继承的几种方式

文章の目录一、借助父构造函数继承属性1、实现方式2、优点3、缺点二、原型链继承1、实现方式2、优点3、缺点三、组合继承四、ES6继承的实现方式参考写在最后一、借助父构造函数继承属性 1、实现方式 先定义一个父构造函数(this指向为window)&#xff1b;再定义一个子构造函数…

了解Nginx,这一篇就够了

了解Nginx&#xff0c;这一篇就够了1.Nginx应用场景2.Nginx相关概念正向代理和反向代理负载均衡动静分离3.Nginx配置文件解析全局块events块http块1.Nginx应用场景 HTTP服务器&#xff1a;Nginx本身也是一个静态资源的服务器&#xff0c;当只有静态资源的时候&#xff0c;就可…

玩转 Kubernetes 配置管理:ConfigMap 和 Secret 实战演示

目录一、简介二、ConfigMap2.1 基于目录创建 ConfigMap2.2 基于文件创建 ConfigMap2.3 从环境文件创建 ConfigMap2.4 定义从文件创建 ConfigMap 时要使用的键2.5 根据字符串创建 ConfigMap三、Secret3.1 基于文件创建Secret3.2 基于字符串创建Secret3.3 yaml文件方式创建secret…

安卓项目搭建grpc环境

本篇文章使用的IDE是Android Studio。这里先吐槽一句&#xff0c;安卓项目搭建grpc环境&#xff0c;不管是引入插件还是引入第三方库&#xff0c;对于版本的要求都极为苛刻&#xff0c;一旦版本不匹配就会报错&#xff0c;所以对于版本的搭配一定要注意。 下面介绍的这个版本搭…

CMake中cmake_host_system_information的使用

CMake中的cmake_host_system_information命令用于查询各种主机系统信息&#xff0c;其格式如下&#xff1a; cmake_host_system_information(RESULT <variable> QUERY <key> ...) # 1 cmake_host_system_information(RESULT <variable>QUERY WINDOWS_REGIST…

【爬虫理论实战】详解常见头部反爬技巧与验证方式 | 有 Python 代码实现

以下是常见头部反爬技巧与验证方式的大纲&#xff1a; User-Agent 字段的伪装方式&#xff0c;Referer 字段的伪装方式&#xff0c;Cookie 字段的伪装方式。 文章目录1. ⛳️ 头部反爬技巧1.1. User-Agent 字段&User-Agent 的作用1.2. 常见 User-Agent 的特征1.3. User-Age…

Spring IoC容器之常见常用注解以及注解编程模型简介

一、全文概览 本篇文章主要学习记录Spring中的核心注解&#xff0c;罗列常见常用的注解以及Spring中的注解编程模型介绍 二、核心注解 1、Spring模式注解 常用注解场景描述Spring起始支持版本Component通用组件模式注解&#xff0c;是所有组件类型注解的元注解Spring 2.5Repo…

【分库分表】企业级分库分表实战方案与详解(MySQL专栏启动)

&#x1f4eb;作者简介&#xff1a;小明java问道之路&#xff0c;2022年度博客之星全国TOP3&#xff0c;专注于后端、中间件、计算机底层、架构设计演进与稳定性建设优化&#xff0c;文章内容兼具广度、深度、大厂技术方案&#xff0c;对待技术喜欢推理加验证&#xff0c;就职于…

计算机操作系统概述

文章目录1.0 操作系统概述1.1 操作系统的目标1.2 操作系统的功能1.3 操作系统结构1.4 操作系统接口1.5 操作系统的发展1.6 操作系统的特征2.0 进程管理2.1 进程调度2.2 进程调度算法2.3 进程间通信2.4 进程间的同步2.5 软件实现互斥的方法2.6 硬件实现互斥的方法2.7 信号2.8 管…

python基于django 医院急诊挂号系统

目录 1 绪论 1 1.1课题背景 1 1.2课题研究现状 1 1.3初步设计方法与实施方案 2 1.4本文研究内容 2 2 系统开发环境 4 2.1 JAVA简介 4 2.2MyEclipse环境配置 4 2.3 B/S结构简介 4 2.4MySQL数据库 5 2.5 SPRINGBOOT框架 5 3 系统分析 6 3.1系统可行性分析 6 3.1.1经济可行性 6 3.…

Mysql(二)索引、查询

索引一、索引索引分类MySQL索引结构**B和B-树的区别**语法创建修改删除查看二、MySQL查询一、索引 概念&#xff1a; 索引时帮助MySQL高效获取数据的数据结构 本质&#xff1a; 数据结构 实现&#xff1a; 在存储引擎层面实现的&#xff0c;而不是server层面。不是所有的存储引…

CNI 网络分析(九)Calico IPIP

文章目录环境流量分析Pod 间Node 到 PodPod 到 serviceNode 到 serviceNetworkPolicy理清和观测网络流量环境 可以看到&#xff0c;在宿主机上有到每个 pod IP 的路由指向 veth 设备 到对端节点网段的路由 指向 tunl0 下一跳 ens10 的 ip 有到本节点网段 第一个 ip 即 tunl0 的…